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Professor B. S. Yadav
(31 July 1931 – 24 February 2010)

B. S. Yadav was born in Mathura, India. He dedicated his whole life to
the cause of mathematics and the history of mathematical sciences. After
obtaining his B Sc (1953) and M Sc (1957) degrees from Agra University
and Aligarh Muslim University, respectively, he pursued research in math-
ematics at M. S. University, Baroda, for which he was awarded the Ph.D.
in 1965. Through his extended research career he made significant contribu-
tions to functional analysis, operator theory, Fourier analysis, and studies in
the history of mathematics. His teaching career started at M. S. University,
Baroda (Lecturer, 1956–1964). He then moved to Sardar Patel University,
Vallabh Vidya Nagar, Gujarat (Reader, 1964–1970), and later to Delhi Uni-
versity (Reader, 1970–1976 & Professor, 1976–1996). He played an influential
role at various universities and Indian boards of studies. Besides serving on
numerous important committees such as the Academic Council and Research
Degree Committee, he also worked as Head of the Department of Mathematics
and as Dean of the Faculty of Mathematical Sciences in Delhi University for
several years. He was widely traveled, with over 25 visits to various universi-
ties abroad, and was a Visiting Professor of Mathematics at Cleveland State
University, Cleveland, Ohio, USA during 1987–1988. He was associated with
several academic bodies and research journals. He was a founding member
of the Indian Society for History of Mathematics, founded by his guide and
mentor, the late Professor Udita Narayana Singh in 1978. He was deeply and
emotionally involved with this society and was the main driving force behind
its activities for over two decades. He served the society as its Administrative
Secretary over a long period and was the Editor of the society’s bulletin Ganita
Bhārat̄i in recent years. His tireless efforts contributed a good deal in creating
a new awareness in the study and research of the history of mathematics in
the Indian context. He inspired many, young and old, to enter into new ven-
tures in the study of ancient, medieval, and modern history of mathematics.
He continued to be engaged with mathematics to his last breath.

B. S. Yadav was an organizer par excellence. He organized many national
and international conferences, seminars, and workshops. He always encour-
aged the publication of their proceedings and had been anxiously awaiting an
early release of this book before his untimely death, but the cruel hands of
destiny did not allow the fulfillment of his wish.
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Foreword

In recent years, the study of the history of Indian mathematics has accelerated
dramatically. This is illustrated not only by the holding of international meet-
ings, including the 2001 meeting initiated by the Indian Society for History of
Mathematics and the 2003 joint meeting of the Indian Mathematical Society
and the American Mathematical Society, one of whose themes was the his-
tory of Indian mathematics, but also by the increasing number of research
articles on the subject being published in international journals. However, it
is still true that the history of mathematics in India has not yet achieved the
recognition that it deserves.

The knowledge of ancient and medieval Indian mathematics was always
kept alive in India, but once the British ruled the subcontinent, the education
system they introduced did not value native Indian contributions to mathe-
matics. Thus the knowledge of these ideas tended to be buried in the rush to
learn modern European mathematics. Nevertheless, there were British schol-
ars, and later scholars from elsewhere in Europe, who attempted to bring some
knowledge of this mathematics back to Europe.

Probably the earliest substantive knowledge in Europe of the history
of Indian mathematics — in the early nineteenth century — was due to
Henry Thomas Colebrooke, who, after collecting various Sanskrit mathemat-
ical and astronomical texts, published in 1817 his Algebra with Arithmetic
and Mensuration from the Sanskrit of Brahmagupta and Bhāskara. Thus,
parts of the major texts of two of the most important medieval Indian math-
ematicians became available in English, along with excerpts from Sanskrit
commentaries on these works. Then in 1835, Charles Whish published a paper
dealing with the fifteenth-century work in Kerala on infinite series, and in 1860
Ebenezer Burgess published an English translation of the Sūrya-Siddhānta, a
major early Indian work on mathematical astronomy. In 1874 Hendrik Kern
produced an edition of the Āryabhat. īya by Āryabhat.a, while George Thibaut
wrote a detailed essay on the Śulbasūtras, which was published, along with his
translation of the Baudhāyana-Śulbasūtra, in the late 1870s. Indian researchers
around the same time, including Bapu Deva Sastri, Sudhakara Dvivedi, and
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XII Foreword

S. B. Dikshit, began looking again into their mathematical heritage. Although
their own work was originally published in Sanskrit or Hindi, their research
paved the way for additional translations into English.

Despite the availability of some Sanskrit mathematical texts in English, it
still took many years before Indian contributions to the world of mathemat-
ics were recognized in major European historical works. Of course, European
scholars knew about the Indian origins of the decimal place-value system.
But in part because of a tendency in Europe to attribute Indian mathemati-
cal ideas to the Greeks and also because of the sometimes-exaggerated claims
by Indian historians about Indian accomplishments, a balanced treatment of
the history of mathematics in India was difficult to achieve. Perhaps the best
of such works in the first half of the twentieth century was the History of
Indian Mathematics: A Source Book, published in two volumes by the Indian
mathematicians Bibhutibhusan Datta and Avadhesh Narayan Singh in 1935
and 1938. More recent book-length surveys of Indian mathematics include
The History of Ancient Indian Mathematics, by C. N. Srinivasiengar (1967)
and Mathematics in Ancient and Medieval India, by A. K. Bag (1979). Briefer
surveys as parts of longer works include the article by S. N. Sen on “Mathe-
matics,” which appears in A Concise History of Science in India, edited by
D. M. Bose, S. N. Sen, and B. V. Subbarayappa (1971) and several chap-
ters in The Crest of the Peacock: Non-European Roots of Mathematics, by
George Gheverghese Joseph (1991, 2000). But given that a large number of
ancient and medieval Indian manuscripts have not yet been translated from
the original languages, there is still much to learn before a comprehensive
story of Indian mathematics can be told. Therefore, in recent years, several
Indian scholars have produced new Sanskrit editions of ancient texts, some of
which have never before been published. And new translations, generally into
English, are also being produced regularly, both in India and elsewhere.

The availability of new sources has led to an increasing number of research
articles dealing with Indian mathematics, both in Indian journals, such as
Gan. itā Bhārti (the Bulletin of the Indian Society for History of Mathematics)
and the Indian Journal of the History of Science, and in the standard inter-
national journals on the history of mathematics. One published collection of
research and survey articles is the 2005 volume Contributions to the History
of Indian Mathematics, published by the Hindustan Book Agency.

Ancient Indian Leaps into Mathematics aims to continue this process of
making the history of Indian mathematics known to the global mathematical
community. It contains a wide-ranging collection of articles, exemplifying the
nature of recent work in Indian mathematics. Among the articles are ones
dealing with the mathematical work of two reputed Indian mathematicians,
Brahmagupta and Bhāskarācārya. There are also articles about the relation-
ship of Indian mathematics to the mathematics of both China and Greece.
There is a study of Keralese mathematics and a study of the technique of
application of areas as seen in the Śulbasūtras. And there is a detailed article
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Foreword XIII

on Indian calendrical calculations, complete with computer programs enabling
readers to determine Indian dates on their own.

The net result of books such as this one is that the history of Indian
mathematics is now becoming a part of the world history of mathematics.
It is possible to see common threads in Indian mathematics and mathematics
in other civilizations, and therefore scholars are examining the transmission
of mathematical ideas among India, China, the Islamic world, and Western
Europe. It is certainly too early to come to definite conclusions about whether
the algorithms for root extraction were transmitted among India, China, and
the Islamic world, for example, or whether the Jesuits transmitted Keralese
ideas on power series to Europe. But with continued research in the history of
Indian mathematics, we will get closer to answers to such questions. We will
also be better able to understand how the particular nature of a civilization
affects the development of its mathematics.

Victor J. Katz
Professor Emeritus of Mathematics

University of the District of Columbia
Washington DC 20008, USA

Email address: vkatz@udc.edu
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Preface

If you talk of the history of mathematics to any Indian mathematician, you are
most likely to have two types of reactions. Firstly, his mind would immediately
flash back to the great works of ancient Indian mathematicians, including even
the mathematical contents of the Vedas which he might hardly have had a
chance to look at. This is but natural. Apart from Indians, the whole world
feels rightly proud of the importance of the great mathematical achievements
in ancient India. Secondly, he remonstrates (and this may happen even in
the case of a respectable Indian mathematician) that he does not know the
history of mathematics, nor is he interested in knowing it; in fact, he has no
time to learn it. However, the fact remains that as soon as a new mathematical
work originates, its history begins along with it and keeps taking shape as the
subject develops. Thus the history of mathematics cannot be separated from
mathematics. As André Weil put it, the history of mathematics is in itself
mathematics and no one should venture to enter the field unless he knows
enough of mathematics.

Placed between these two extraordinary adventitious and redundant
situations, the studies of the history of mathematics in India have suffered
hopelessly. In fact, they have yet to be initiated in the right perspective. While
a good university in every part of the world has a department/institute of
study in the history and philosophy of mathematics, it is disappointing that
there is hardly a university in India that provides facilities for such studies.

This has led to a deadening disposition: History of mathematics in India
has come to mean the ‘history of ancient Indian mathematics’. While there is
a vast ocean of world history of mathematics spread before us, Indians cannot
afford to row in the backwaters of this vast ocean, however rich these may
be. Moreover, how long could we continue doing so? After all, studies in the
history of mathematics in India cannot be cramped to, say, up to the twelfth
century c.e.

Regarding the objectives of this volume, the proposal was to publish a
collection of contributed articles in the form of a book entitled Ancient Indian
Leaps into Mathematics. The aim was to highlight significant, positive, and
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concrete contributions made by ancient Indian mathematicians in the initial
advancement of mathematics and possibly relate them to the developments
elsewhere in the world in those days, particularly to those in Greece, the
Middle East, China, and Japan. The author of an article to be included in
the book was expected to take care of the following:

The article should not contain any vacuous, pompous or pretentious
statements, and at no stage be verbose. Statements like the ‘Vedas contain all
ancient knowledge’ and ‘there exists no knowledge outside the Vedas’ should
be considered out of place. The article should not directly or indirectly be
based on the contents or spirit of the book Vedic Mathematics by Jagadguru
Swami Sri Bharati Krisna Tirathji Maharaj, for the simple reason that the
contents of that book are neither Vedic nor ancient Indian.1,2

Unnecessary praise for ancient Indian mathematics or any part thereof has
to be avoided. The article need not be a research article on ancient Indian
mathematics (mathematicians) and could very well be a ‘revisitation’ of the
subject, but the exposition has to be very well-defined and concrete. A literary
style of the exposition is welcome.

Articles describing concrete illustrations of the influence or connections of
ancient Indian mathematics on Greek and Middle Eastern countries will be
preferred. They should appear as one unit of the world history of mathematics,
rather than belonging to one sector or civilization having nothing to do with
the rest of the world.

Finally, and most importantly:

Unfortunately it is customary among most Indian scholars to exaggerate
the achievements of a particular Indian mathematician to claim that he was
better than the greatest of his time, without bothering in the least about the
existence of others during that period. As many such claims are not actually
true and it is almost impossible to prove them, their efforts in aggrandizing his
real achievements ultimately result in belittling his work in the overall context
of the world history of mathematics. Again, even more unfortunately, there has
been a consistent tendency on the part of Western historians of mathematics
and the Euro-centric scholars of history of mathematics, to ignore, let alone
undermine, the mathematical achievements of ancient India. Their belief that
except for the discovery of the concept of zero and the decimal representation
of numbers, which, of course, is now universally accepted, everything else great
in mathematics was done outside India is really untenable. The reason for
such thinking is, in fact, somewhat easy to understand: The whole of Europe

1 The interested reader is recommended to refer to: Dani, S. G.: Myth and Reality:
on ‘Vedic Mathematics.’ An updated version of a two-part article in Frontline
(Vol. 10, No. 21, October 22, 1993, pp. 90–92, and Vol. 10, No. 22, November 5,
1993, pp. 91–93).

2 Neither Vedic Nor Mathematics: A statement signed by S. G. Dani, and et al.
http://www.sacw.net/DC/CommunalismCollection/ArticlesArchive/NoVedic
.html.
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learned mathematics only through the Greeks. The present book aims to dispel
this notion and place in a proper perspective the significant achievements of
ancient India in the world history of mathematics.

The royalties from the publication of the work will go to the Indian Society
for History of Mathematics to help overcome its financial infirmities.

What is it that we have done? Almost nothing! In the civil administration
of every city or town, there are offices of ‘Assessors and Collectors’. Their
job is to assess the properties of the residents in the area of their jurisdic-
tion, evaluate taxes on these properties according to the rules, and collect
the taxes for the government. This is precisely what we have done. Once the
objectives were decided, we contacted a number of reputed scholars of the
history of ancient Indian mathematics for their contributions. Not all came
forward. However, those who did constitute a good (a well-defined) subset of
the undefined collection. It is only for the reader to judge how far we have
been successful in our humble mission.

As it is a unique endeavor, we had to tap many sources for assistance.
Our first thanks go to the authors who were so enthusiastic to contribute
their articles to the volume. We appreciate their patience to bear with us for
almost 2 years to wait to see their work in print. Next, we are grateful to
Professor Victor Katz who took pleasure, and pains too, to go through the
whole manuscript, make significant suggestions to improve the text, including
even rejecting an article on pertinent grounds, before writing the Foreword.
Again, our thanks are also due to Satish Verma, SGTB Khalsa College, Delhi
University, endowed with unusually skilled expertise, who helped us in prepar-
ing camera-ready copy of the manuscript. His knack of converting Sanskrit
ślokās into their Roman rendering, and vice versa, was remarkable.

Finally we thank Birkhäuser Boston, and in particular, Ann Kostant and
Avanti Paranjpye, for their help in preparing the manuscript in its final form.

New Delhi, India B. S. Yadav
August 15, 2008 Man Mohan

Assessors and Collectors
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Indian Calendrical Calculations

Nachum Dershowitz1 and Edward M. Reingold2,∗

1 School of Computer Science, Tel Aviv University, 69978 Ramat Aviv, Israel,
nachum.dershowitz@cs.tau.ac.il

2 Department of Computer Science, Illinois Institute of Technology, 10 West 31st
Street, Chicago, IL 60616-2987, USA, reingold@iit.edu

The months of the Hindus are lunar, their years are solar;
therefore their new year’s day must in each solar year

fall by so much earlier as the lunar year is shorter than the solar. . . .
If this precession makes up one complete month,

they act in the same way as the Jews,
who make the year a leap year of 13 months . . . ,

and in a similar way to the heathen Arabs.

— Alberuni’s India

1 Introduction

The world’s many calendars are of three primary types: diurnal, solar, and
lunar; see the third edition of our Calendrical Calculations [3] (henceforth
CC ). All three are represented among the many calendars of the Indian
subcontinent.

• A diurnal calendar is a day count, either a simple count, like the Julian day
number used by astronomers, or a complex, mixed-radix count, like the
Mayan long count (see Sect. 10.1 of CC ). The classical Indian day count
(ahargan. a) is used for calendrical purposes.

• Solar calendars have a year length that corresponds to the solar year.
All modern solar calendars add leap days at regular intervals to adjust the

1 Nachum Dershowitz is a professor of computer science at Tel Aviv University. His
research interests include rewriting theory, equational reasoning, abstract state
machines, the Church–Turing Thesis, Boolean satisfiability, and natural language
processing, in addition to calendrical algorithms.

2 Edward M. Reingold is a professor and former chairman of the Department of
Computer Science at the Illinois Institute of Technology. Aside from calendars,
his research interests are in theoretical computer science, especially the design
and analysis of algorithms and data structures.

B.S. Yadav and M. Mohan (eds.), Ancient Indian Leaps into Mathematics, 1
DOI 10.1007/978-0-8176-4695-0 1, c© Springer Science+Business Media, LLC 2011
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2 Nachum Dershowitz and Edward M. Reingold

mean length of the calendar year to better approximate the true solar year.
The solar (saura) calendar is more popular in northern India; a similar one
is in use in Nepal.3

• A lunar (cāndra) calendar has as its primary component a mensural unit
that corresponds to the lunar synodic month. It can be purely lunar, as in
the 12-month Islamic calendar year (see Chap. 6 of CC ), or it can incor-
porate occasional leap months, as in the Hebrew lunisolar calendar (see
Chap. 7 of CC ). Several forms of the lunisolar calendar are in use in India
today; the Tibetan Phugpa or Phug-lugs calendar is somewhat similar (see
Chap. 19 of CC ).

In general, a date is determined by the occurrence of a cyclical event
(equinox, lunar conjunction, and so on) before some “critical” time of day,
not necessarily during the same day. For a “mean” (madhyama) calendar, the
event occurs at fixed intervals; for a “true” (spas. t.a) calendar, the (approximate
or precise) time of each actual occurrence of the event must be calculated.
Various astronomical values were used by the Indian astronomers Āryabhat.a
(circa 300 c.e.), Brahmagupta (circa 630 c.e.), the author of Sūrya-Siddhānta
(circa 1000 c.e.), and others.

We systematically apply the formulæ for cyclic events in Chap. 1 of
CC to derive formulæ for generic mean single-cycle and dual-cycle calen-
dars; see Chap. 12 of CC for more details. Solar calendars are based on
the motion of the sun alone, so they fit a single cycle pattern; luniso-
lar calendars, on the other hand, take both the solar and lunar cycles
into account, so they require double-cycle formulæ. We apply these generic
algorithms to the old Indian solar and lunisolar calendars, which are based
on mean values (see Chap. 9 of CC ). We also use the code in CC to
compare the values obtained by the much more complicated true Indian
calendars (Chap. 18 of CC ) with their modern astronomical counterparts.
Unless noted otherwise, we centre our astronomical calculations on the year
1000 c.e.

We ignore many trivial differences between alternative calendars, such
as eras (year count). Some Indian calendars count “elapsed” years, begin-
ning with year 0; others use “current,” 1-based years. The offsets of some
common eras from the Gregorian year are summarized in Table 1. Indian
month names are given in Table 2. Tamil names are different. There are
also regional differences as to which is the first month of the year. Fi-
nally, calendars are local, in the sense that they depend on local times of
sunrise.

The next brief section describes the Indian day count. Section 3 presents
a generic solar calendar and shows how the mean Indian solar calendar fits
the pattern. It is followed by a section that compares the later, true calendar
with modern astronomical calculations. Similarly, Sect. 5 presents a generic
3 We have been unable to ascertain the precise rules of the Nepalese solar calendar.
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Indian Calendrical Calculations 3

Table 1. Some eras, given as the offset from the Gregorian year

Era Current year Elapsed year

Kali Yuga +3102 +3101
Nepalese +877
Kollam +823
Vikrama +58 +57

Śaka −77 −78
Bengal −593
Caitanya −1486

Table 2. Indian month names

Vedic Zodiacal sign Month

1 Madhu Mes.a (Aries) ��� Vaísākha ����	
2 Mādhava Vr.s.abha (Taurus) �
 �� Jyes.t.ha �
��
3 Śukra Mithuna (Gemini) ���� � Ās.ād. ha a����
4 Śuchi Karka (Cancer) ��� Śrāvan. a r���
5 Nabhas Sim. ha (Leo) ���� Bhādrapada ���� ��
6 Nabhasya Kanyā (Virgo) ��
� Āśvina a��v�
7 Issa Tulā (Libra)  � !� Kārtika ��� ��
8 Ūrja Vr.ścika (Scorpio) �
 �c� Mārgaś̄ırs.a ��#��$��
9 Sahas Dhanus (Sagittarius) %�� �& Paus.a �'�
10 Sahasya Makara (Capricorn) ��( Māgha ��)
11 Tapas Kumbha (Aquarius) �� *� Phālguna +�,#� �
12 Tapasya Mı̄na (Pisces) �$� Caitra -�.

lunisolar calendar and its application to the Indian version, and is followed by
a section on the true and astronomical versions. Section 7 discusses aspects
of the traditional calculation of the time of sunrise. Finally, Sect. 8 outlines
the difficulty of computing the day of observance of holidays based on the
lunisolar calendar.

Following the style of CC, the algorithms in this paper are presented as
mathematical function definitions in standard mathematical format. All cal-
endar functions were automatically typeset directly from the Common Lisp
functions listed in the appendix.

2 Diurnal Calendars

In most cases, a calendar date is a triple 〈y, m, d〉, where year y can be any
positive or negative integer, and month m and day d are positive integers,
possibly designated “leap.” A day count is convenient as an intermediate
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Table 3. Day count correlations

Date (Julian) j.a.d. Ahargan. a r.d.

2 January 4713 b.c.e. (noon) 1 −588,464.5 −1,721,423.5
18 February 3102 b.c.e. (midnight) 588,465.5 0 −1,132,959
3 January 1 c.e. (midnight) 1,721,425.5 1,132,960 1

device for conversions between calendars. One can count days from the first
day of a calendar, normally 〈1, 1, 1〉, called the epoch. So 〈1, 1, 1〉, 〈1, 1, 2〉,
and so on correspond to (elapsed) day count 0, 1, and so on. Days prior
to the epoch have negative day counts and nonpositive year numbers. Day
counts can be 0-based or 1-based; that is, the epoch may be assigned 0 or 1.
In CC, we use the Rata Die (r.d.) count, day 1 of which is 1 January 1
(Gregorian).

The ahargan. a (“heap of days”) is a 0-based day count of the Kali Yuga
(k.y.) era, used in Indian calendrical calculations. The k.y. epoch, day 0 of the
ahargan. a count, is Friday, 18 February 3102 b.c.e. (Julian). Its correlations
with r.d. and with the midday-to-midday Julian day number (j.a.d., popular
among astronomers) are given in Table 3. An earlier count, with much larger
numbers, was used by Āryabhat.a. We use the onset of the Kali Yuga, r.d.
−1,143,959, for our hindu-epoch.

3 Mean Solar Calendars

The modern Indian solar calendar is based on a close approximation to the
true times of the sun’s entrance into the signs of the sidereal zodiac. The
Hindu names of the zodiac are given in Table 2. Traditional calendarists em-
ploy medieval epicyclic theory (see [11] and Sect. 18.1 of CC ); others use a
modern ephemeris. Before about 1100 c.e., however, Hindu calendars were
usually based on average times. The basic structure of the calendar is similar
for both the mean (madhyama) and true (spas. t.a) calendars. The Gregorian,
Julian, and Coptic calendars are other examples of mean solar calendars; the
Persian and French Revolutionary are two examples of true solar calendars.
In this and the following section, we examine these two solar calendar
schemes.

The Indian mean solar calendar, though only of historical interest, has a
uniform and mathematically pleasing structure. (Connections between leap-
year structures and other mathematical tasks are explored in [4].) Using the
astronomical constants of the Ārya-Siddhānta yields 149 leap years of 366
days, which are distributed evenly in a cycle of 576 years. Similarly, 30-day
and 31-day months alternate in a perfectly evenhanded manner.
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3.1 Single-Cycle Calendars

The mean solar calendar is an instance of a general single-cycle calendar
scheme. Consider a calendar with mean year length of Y days, where Y is a
positive real number. If Y is not a whole number, then there will be common
years of length �Y � and leap years of length �Y �, with a leap-year frequency
of Y mod 1.

To convert between r.d. dates and single-cycle dates, we apply formulæ
(1.73) and (1.77) from Sect. 1.12 of CC. Suppose that a year is divided into
months of length as close to equal as possible. For a standard 12-month year,
the average length of a month would be M = Y/12. Some months, then,
should be �M� days long, and the rest �M� days. Alternatively, a year may
include a 13th short month, in which case M is the mean length of the first
12 months. (In any case, we may assume that Y ≥ M ≥ 1.)

A day is declared “New Year” if the solar event occurs before some critical
moment. In other words, if tn is the critical moment of day n, then n is
New Year if and only if the event occurs during the interval [tn − 1, tn). The
beginnings of new months may be handled similarly or may be determined by
simpler schemes, depending on the calendar; we discuss this below.

Suppose that the sun was at the critical longitude at the critical time t−1

of day −1, the day before the epoch, so that day −1 just missed being New
Year. Finally, assume that a leap day, when there is one, is added at year’s
end. The number n of elapsed days from the calendar’s epoch 〈0, 0, 0〉 until a
date 〈y, m, d〉 (all three components are for now 0-based) is simply

�yY � + �mM� + d, (1)

with inverse
y = �(n + 1)/Y � − 1,

n′ = n − �yY �,
m = �(n′ + 1)/M� − 1,
d = n′ − �mM�.

(2)

If the rule is that the event may occur up to and including the critical
moment, then n is New Year if and only if the event occurs during the interval
(tn − 1, tn]. Accordingly, we need to change some ceilings and floors in the
above formulæ. Supposing that the event transpired exactly at that critical
moment t0 of the epoch, the elapsed-day calculation becomes:

�yY � + �mM� + d. (3)

The inverse function, assuming Y ≥ M ≥ 1, converting a day count n into a
0-based date, 〈y, m, d〉, is

y = �n/Y �,
n′ = �n mod Y �,
m = �n′/M�,
d = �n′ mod M�.

(4)
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The above four formulæ (1–4) assume that months are determined in the
same way as are years, from a specified average value M , and, therefore, follow
the same pattern every year (except for the leap day in the final month of
leap years).4 There is an alternative version of mean solar calendars in which
month lengths can vary by 1 day, and are determined by the mean position of
the sun each month. In this case, we combine the calculation of the number
of days in the elapsed years and those of the elapsed months. Assuming a
12-month year with M = Y/12, we have

�yY + mM� + d (5)

or

�yY + mM� + d, (6)

depending on whether the “before” or “not after” version is required. The
inverses for these two variable-month versions are

y = �(n + 1)/Y � − 1,
m′ = �(n + 1)/M� − 1,
m = m′ mod 12,
d = n − �m′M�,

(7)

and
y = �n/Y �,

m = �n/M� mod 12,
d = �n mod M�,

(8)

respectively.

3.2 Generic Single-Cycle Calendars

The critical event for a calendar sometimes occurs exactly at the calendar’s
epoch (k.y., in the Indian case). However, often an additional complication is
introduced, wherein the relevant critical event occurred some fraction of a day
before the critical time for the epoch. Furthermore, the cyclical month pattern
may have its own starting point. Accordingly, for the fixed-month calendar,
we are given the following constants:

1. The calendar epoch, single-cycle-epoch, an integer.
2. The offset of the first critical event, delta-year, a number in the range

[0, 1).
3. The average year length, average-year-length, of at least 1 day.

4 In CC, formulæ are given for the hybrid case where years are determined by the
“not after” convention, but months by a “before” rule. There are also various
cosmetic differences between the formulæ given here and in CC.
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4. The average month length, average-month-length, at least 1 day long,
but no longer than an average year.

5. The offset for the first month, delta-month, also in the range [0, 1).

In the “before” version of the rules, the critical yearly event for the epochal
year occurred delta-year days after the earliest possible moment, which is
1 − delta-year days before the critical time. Similarly, the critical monthly
event for the first month of the calendar occurred delta-month days after
its earliest possible time.

To convert a single-cycle 1-based date to an r.d. date, we add to the epoch
the days before the year , the days before month in year , and the days before
day in month, taking the initial offsets into account:

fixed-from-single-cycle
(

year month day

)
def= (9)

single-cycle-epoch

+ �(year − 1) × average-year-length + delta-year�
+ �(month − 1) × average-month-length + delta-month� + day − 1

In the other direction, we compute the single-cycle date from an r.d. date
by determining the year from the start of the mean year using (1.68) from
CC, the month from (1.68) applied to the month parameters, and the day by
calculating the remainder:

single-cycle-from-fixed (date) def= (10)

year month day

where

days = date − single-cycle-epoch

year =
⌈

days + 1 − delta-year
average-year-length

⌉

n = days

− ⌊
delta-year + (year − 1) × average-year-length

⌋

month =
⌈

n + 1 − delta-month
average-month-length

⌉

day = n + 1

−⌊
delta-month

+ (month − 1) × average-month-length
⌋
,
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The Coptic calendar, with average-year-length of 365 1
4 days, is also a

single-cycle calendar, but we need to use an artificial average-month-length
of 30 to accommodate its twelve 30-day months, which are followed by an
extra “month” of epagomenē lasting 5–6 days. Also, single-cycle-epoch =
r.d. 103,605, delta-year = 1/4, and delta-month = 0. Compare Table 1.4
and Chap. 4 of CC.

The Julian (old style) calendar, on the other hand, even though it has
the same year length as the Coptic, does not fit our scheme, because of its
irregular month lengths; see Chap. 3 of CC.

It should be stressed that for these functions to operate correctly for ra-
tional parameters, precise arithmetic is incumbent. Otherwise, 4 years, say, of
average length 365 1

4 might not add up to an integral number of days, wreaking
havoc on functions using floors, ceilings, and modular arithmetic.

For the alternate version, where the critical event may occur at the critical
time, delta-year is the fraction of the day before the critical moment of the
epoch at which the event occurred. The same is true for delta-month. So,
we have, instead,

alt-fixed-from-single-cycle
(

year month day

)
def= (11)

single-cycle-epoch

+ �(year − 1) × average-year-length − delta-year�
+ �(month − 1) × average-month-length− delta-month� + day − 1

alt-single-cycle-from-fixed (date) def= (12)

year month day

where

days = date − single-cycle-epoch + delta-year

year =
⌊

days
average-year-length

⌋
+ 1,

n = �days mod average-year-length� + delta-month

month =
⌊

n
average-month-length

⌋
+ 1,

day = �n mod average-month-length� + 1.

This version, too, works for the Coptic calendar, but with delta-year = 1
2 .

Now for the variable-month version. As before, we have the epoch of the
calendar single-cycle-epoch, the average year length average-year-length,
and the initial offset delta-year. However, instead of the fixed-month
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structure given by average-month-length and delta-month, we simply
specify the (integral) number of months in the year, months-per-year. To
convert between r.d. dates and dates on this single-cycle mean calendar, we
again apply formulæ (1.65) and (1.68) from Sect. 1.12 of CC, but with minor
variations.

In this case, to convert a single-cycle date to an r.d. date, we add the
days before the mean month in year , and the days before day in month:

var-fixed-from-single-cycle
(

year month day

)
def= (13)

single-cycle-epoch

+
⌊

(year − 1) × average-year-length + delta-year

+ (month − 1) × mean-month-length
⌋

+ day − 1

where

mean-month-length =
average-year-length

months-per-year

In the other direction, we compute the single-cycle date from an r.d.
date by determining the year from the start of the mean year using (1.68),
the month from (1.68) applied to the month parameters, and the day by
subtraction:

var-single-cycle-from-fixed (date) def= (14)

year month day

where

days = date − single-cycle-epoch

offset = days + 1 − delta-year

year =
⌈

offset
average-year-length

⌉
,

mean-month-length =
average-year-length

months-per-year
,

m ′ =
⌈

offset
mean-month-length

⌉
− 1,

month = 1 + (m ′ mod months-per-year)

day = days + 1

− �delta-year + m ′ × mean-month-length�
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3.3 Indian Mean Solar Calendar

Unlike other solar calendars, especially the universally used Gregorian, the
Indian calendars are based on the sidereal (nakshatra) year. The old Hindu
mean (madhyama) solar calendar is an example of the second version of our
generic solar calendar, using an estimate of the length of the sidereal year and
mean sunrise as the critical time.

However, we need the fourth version of the formulæ, with the determining
event occurring before or at the critical time:

alt-var-fixed-from-single-cycle(
year month day

)
def=

(15)

single-cycle-epoch

+
⌈

(year − 1) × average-year-length − delta-year

+ (month − 1) × mean-month-length
⌉

+ day − 1

where

mean-month-length =
average-year-length

months-per-year

and

alt-var-single-cycle-from-fixed (date) def= (16)

year month day

where

days = date − single-cycle-epoch + delta-year

mean-month-length =
average-year-length

months-per-year

year =
⌊

days
average-year-length

⌋
+ 1

month = 1 +
( ⌊

days
mean-month-length

⌋

mod months-per-year
)

day = �days mod mean-month-length� + 1

Following the First Ārya Siddhānta regarding year length, the constants
we would need are:
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single-cycle-epoch def= hindu-epoch (17)

average-year-length def= 365
149
576

(18)

delta-year def=
1
4

(19)

months-per-year def= 12 (20)

The above algorithms give a 1-based year number. The necessary changes
for versions of the Indian calendar that use elapsed years (including those in
CC ) are trivial.

4 True Solar Calendars

One may say that a solar calendar is astronomical if the start of its years
is determined by the actual time of a solar event. The event is usually an
equinox or solstice, so we presume that it is the moment at which the true
solar longitude attains some given value, named critical-longitude below,
and can assume that the true and mean times of the event differ by at most
5 days.

The astronomical Persian calendar (Chap. 14 of CC ) uses a critical solar
longitude of 0◦ for the vernal equinox and apparent noon in Tehran as its
critical moment. The defunct French Revolutionary calendar (Chap. 16 of CC )
used a critical solar longitude of 180◦ for the autumnal equinox and apparent
midnight in Paris as its critical moment.5

4.1 Generic Solar Calendars

Fixed-month versions of the true calendar usually have idiosyncratic month
lengths. This is true of both the Persian and Bahá’́ı calendars; see Chaps. 14
and 15 of CC. So we restrict ourselves to the determination of New Year.
First, we define a function to determine the true longitude at the critical
time of any given day, where the critical time is determined by some function
critical-time:

true-longitude (date) def= (21)

solar-longitude (critical-time (date))

5 A generic version of such calendars was mentioned in our paper [2] as Lisp macros.
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Since solar longitude increases at different paces during different seasons, we
search for the first day the sun attains the critical-longitude, beginning 5
days prior to the mean time:

solar-new-year-on-or-after (date) def= (22)

MIN
d≥start{

critical-longitude ≤ true-longitude (d)

≤ critical-longitude + 2

}

where

λ = true-longitude (date)

start = date − 5

+
⌊

average-year-length × 1
360

× ((critical-longitude− λ) mod 360)
⌋

The initial estimate is based on the current solar longitude λ, with an average
daily increase of 360◦/Y .

Solar New Year (Sowramana Ugadi) in a given Gregorian year is then
computed as follows:

hindu-solar-new-year (g-year ) def= (23)

solar-new-year-on-or-after(
fixed-from-gregorian

(
g-year january 1

) )

which uses the r.d. from Gregorian conversion function fixed-from-
gregorian (2.17) of CC.

For a variable-month version of the true calendar, such as the Indian solar
calendar and its relatives, the start of each month is also determined by the
true solar longitude:

solar-from-fixed (date) def= year m + 1 date − begin + 1 (24)

where

λ = true-longitude (date)

m =
⌊

λ

30◦

⌋

year = round
(

critical-time (date) − solar-epoch
average-year-length

− λ

360◦

)
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Table 4. Sidereal year values

Source Length

First Ārya-Siddhānta 365.258681 365d6h12m30s

Brahma-Siddhānta 365.258438 365d6h12m 9s

Original Sūrya-Siddhānta 365.258750 365d6h12m36s

Present Sūrya-Siddhānta 365.258756 365d6h12m36.56s

Modern Value (for 1000 c.e.) 365.256362 365d6h 9m 8.44s

approx = date − 3 − (�λ� mod 30◦)

begin = MIN
i≥approx

{
m =

⌊
true-longitude (i)

30◦

⌋}

This function can be inverted using the methods of Sect. 18.5 of CC.

4.2 True Indian Solar Calendar

For the Indian solar calendar, we need to use the Indian sidereal longitude
function (hindu-solar-longitude in CC ) in place of solar-longitude (in
the true-longitude function). The length of the sidereal year according to
the Sūrya-Siddhānta is

average-year-length = 365
279457
1080000

.

(See Table 4.) The year begins when the sun returns to sidereal longitude 0◦.
There are various critical times of day that are used to determine exactly
which day is New Year.

• According to the Orissa rule (followed also in Punjab and Haryana),
sunrise is used. In other words, the solar month is determined by the
stellar position of the sun the following morning:

orissa-critical (date) def= hindu-sunrise (date + 1) (25)

where hindu-sunrise is sunrise according to the Indian rule or practice
[(18.33) in CC ]. See Sect. 7 for details.

• According to the Tamil rule, sunset of the current day is used:

tamil-critical (date) def= hindu-sunset (date) , (26)

where hindu-sunset is sunset according to the Indian rule or practice.
• According to the Malayali (Kerala) rule, 1:12 p.m. (seasonal time) on the

current day is used:
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malayali-critical (date) def= (27)

hindu-sunrise (date)

+ 3
5 × (hindu-sunset (date) − hindu-sunrise (date)) ,

Kerala also uses a different critical longitude.
• According to some calendars from Madras, apparent midnight at the end

of the day is used:

madras-critical (date) def= (28)

hindu-sunset (date)

+ 1
2 × (hindu-sunrise (date + 1) − hindu-sunset (date)) .

• According to the Bengal rule (also in Assam and Tripura), midnight at
the start of the civil day is usually used, unless the zodiac sign changes
between 11:36 p.m. and 12:24 a.m. (temporal time), in which case various
special rules apply, depending on the month and on the day of the week.

See [8, p. 12] and [1, p. 282]. The function critical-time should be set to one
of these.

4.3 Indian Astronomical Solar Calendar

For an astronomical Indian solar calendar, we need to substitute an astronom-
ical calculation of sidereal longitude for solar-longitude in true-longitude.
We should also use astronomical geometric sunrise (and/or sunset) for
hindu-sunrise (and hindu-sunset) in critical-time; see Sect. 7.

The difference between the equinoctal and sidereal longitude (the
ayanāmsha) changes with time, as a direct consequence of precession of the
equinoxes. It is uncertain what the zero point of Indian sidereal longitude is,
but it is customary to say that the two measurements coincided circa 285
c.e., the so-called “Lahiri ayanāmsha.” Others (for example [10, Sect. 18])
suggest that the two measurements coincided around 560 c.e. Either way,
the overestimate of the length of the mean sidereal year used by the sid-
dhantas leads to a growing discrepancy in the calculation of solar longi-
tude; see Table 4. (The length of the sidereal year is increasing by about
10−4 s/year.)

The Indian vernal equinox, when the sun returns to the sidereal longitude
0◦, is called Mesha sam. krānti. Solar New Year, the day of Mesha sam. krānti,
as computed by hindu-solar-new-year with traditional year lengths, is
nowadays about 4 days later than that which would be obtained by astro-
nomical calculation (assuming the Lahiri value).

To calculate the sidereal longitude, we use the algorithm for precession in
[7, pp. 136–137], as coded in (13.39) of CC, precession. The values given by
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this function need to be compared with its value when the ayanāmsha was 0,
given, according to some authorities, by the following:

sidereal-start def= (29)

precession(
universal-from-local

(mesha-samkranti (285 c.e.) ,hindu-locale)
)
,

where mesha-samkranti (18.51) of CC gives the local time of the (sidereal)
equinox, Ujjain is our hindu-locale, and universal-from-local is one of the
time conversion functions ((13.8) of CC ). Then:

sidereal-solar-longitude (t) def= (30)
(
solar-longitude (t) − precession (t)

+ sidereal-start
)

mod 360

as in (13.40) of CC. That done, we can compare the astronomical calendar
with the approximations used in the true Indian calendar.

The cumulative effect over the centuries of the difference in length of the
sidereal year on the time of Mesha sam. krānti, and on the sidereal longitude
at that time, is shown in Fig. 1. In 1000 c.e., it stood at about 1◦37′.

The average difference between the calculated sidereal longitude and the
astronomical values was 2◦3′ during 1000–1002 c.e. In addition, Fig. 2 shows
a periodic discrepancy of up to ±12′ between the siddhāntic estimate of so-
lar longitude and the true values. The figure also suggests that neither the
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Fig. 1. Increasing difference, for 285–2285 c.e., between siddhāntic and astronom-
ical sidereal longitudes in degrees (solid line) and days (dashed line), assuming
coincidence in 285
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Fig. 2. Difference (1000–1001 c.e.) between siddhāntic and astronomical sidereal
solar longitude (solid black line) in hours. Dotted white line (atop the black line) uses
the mathematical sine function, rather than an interpolated tabular sine; dashed line
uses a fixed epicycle; they are virtually indistinguishable

interpolated stepped sine function used in traditional astronomy nor the fluc-
tuating epicycle of Indian theory (using the smallest [best] size, instead) make
a noticeable difference for the sun. In other words, the tabular sine and arc-
sine functions (see Table 18.2 in CC ) are precise enough for the purpose,
while the theory of changing epicycle (see Fig. 18.2 in CC ) is unnecessary for
the sun.

The difference in longitude for a given moment t , Ujjain local time, is
calculated as:

hindu-solar-longitude(t)
−sidereal-solar-longitude(universal-from-local(t,hindu-locale))

5 Lunisolar Calendars

The lunisolar calendar type is represented by the Chinese (see Chap. 17 of
CC ), Hebrew (see Chap. 7 of CC ), and Easter (see Chap. 8 of CC ) calendars
today, as well as those of some of the Indian and other Asian cultures (for ex-
ample, the Tibetan Phugpa calendar; see Chap. 19 of CC ), and was historically
very popular. The basic idea is that months follow the lunar cycle, with leap
months added every 2–3 years, so that the average year length matches the
sun’s apparent celestial revolution. Indian lunisolar calendars can be further
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subdivided into those whose months begin with each new moon (the amānta
scheme) and those that go from full moon to full moon (pūrn. imānta).

The Hebrew and Easter calendars follow a fixed leap-year cycle, as did the
old Hindu mean lunisolar calendar; the Chinese and modern Hindu calendars
determine each month and year according to the true positions of the sun
and moon. Unlike the Hebrew lunisolar calendar, with its 19-year cycle of 7
leap years, Indian intercalated months, in the mean scheme, do not follow a
short cyclical pattern. Rather, in the Ārya-Siddhānta version, there are 66,389
leap years in every 180,000-year cycle. The Hebrew, Easter, and mean Indian
leap-year rules all distribute leap years evenly over the length of the cycle.

Lunisolar calendars can also come in the same two flavours, fixed- and
variable-month patterns. The Indian mean lunisolar calendar has variable
months, like its solar sister; the Hebrew calendar has a more-or-less fixed
scheme (see Chap. 7 of CC for details).

In the fixed-month scheme, one fixed month (usually the last) of the 13
months of a leap year is considered the leap month, so one can just number
them consecutively. This is not true of the Indian calendar, in which any
month can be leap, if it starts and ends within the same (sidereal) zodiacal
sign.

Unlike other calendars, a day on the mean Indian calendar can be omitted
any time in a lunar month, since the day number is determined by the phase
of the mean moon. Here we concentrate on the leap year structure; see CC
for other details.

5.1 A Generic Dual-Cycle Calendar

Let Y and M be the lengths of the mean solar year and lunar month in
days, respectively, where Y ≥ M ≥ 1 are positive real numbers. If Y is not a
multiple of M , then there will be common years of �Y/M� months and leap
years of length �Y/M� months. Then a year has Y/M months on average,
with a leap-year frequency of (Y mod M)/M .

The basic idea of the dual-cycle calendar is to first aggregate days into
months and then months into years. Elapsed months are counted in the same
way as years are on the single-cycle calendar, using an average length of M
instead of Y . Then, years are built from multiple units of months, rather than
days, again in a similar fashion to a single-cycle calendar.

For the Indian mean lunar calendar, according to the Ārya Siddhānta, we
would use the values

M = 29 2362563
4452778 ,

Y = 365 149
576 ,

and sunrise as the critical time of day. The Hebrew calendar also follows a
dual-cycle pattern, with

M = 29 13753
25920 ,

Y = 285
19 M,
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and noon as critical moment, but exceptions can lead to a difference of up to
3 days.

To convert from a 0-based lunisolar date 〈y, m, d〉 to a day count, use

�(�yY/M� + m)M� + d. (31)

In the other direction, we have:

m′ = �n/M�,
y = �(m′ + 1)M/Y � − 1,

m = m′ − �yY/M�,
d = n − �m′M�.

(32)

When the leap month is not fixed and any month can be leap as in the In-
dian calendar, we would use an extra Boolean component for dates 〈y, m, �, d〉,
and would need to determine which month is leap. On the Chinese calendar,
the first lunar month in a leap year during which the sun does not change its
zodiacal sign (counting from month 11 to month 11) is deemed leap. In the
Indian scheme, the rule is similar: any month in which the sidereal sign does
not change is leap.

As was the case for the solar calendars, there are variants corresponding
to whether the critical events may also occur at the critical moments. See
Sect. 12.2 of CC.

6 True Lunisolar Calendar

The general form of the determination of New Year on a lunisolar calendar is
as follows:

1. Find the moment s when the sun reaches its critical longitude.
2. Find the moment p when the moon attains its critical phase before (or

after) s.
3. Choose the day d before (or after) p satisfying additional criteria.

Some examples include:

• The Nicæan rule for Easter is the first Sunday after the first full moon on
or after the day of the vernal equinox; see Chap. 8 of CC.

• The classical rule for the first month (Nisan) of the Hebrew year was that
it starts on the eve of the first observable crescent moon no more than a
fortnight before the vernal equinox; see Sect. 20.4 of CC.

• The 11th month of the Chinese calendar almost always begins with the
new moon on or before the day of the winter solstice (270◦). The Chinese
New Year is almost always the new moon on or after the day the sun
reaches 300◦; see Chap. 17 of CC.
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• The Indian Lunar New Year is the (sunrise-to-sunrise) day of the last
new moon before the sun reaches the edge of the constellation Aries
(0◦ sidereal); see Chap. 18 of CC.

Using the functions provided in CC :

1. The moment s can be found with solar-longitude-after (13.33).
2. Finding the moment p can be accomplished with lunar-phase-at-or-

before (13.54) or lunar-phase-at-or-after (13.55).
3. Choosing the day is facilitated by kday-on-or-after and its siblings

(Sect. 1.10).

For example, the winter-solstice-to-winter-solstice period is called a sùı on
the Chinese calendar. Hence, the start of the Chinese month in which a sùı
begins, that is, the month containing the winter solstice (almost always the
11th month, but on occasion a leap 11th month) is determined by:

sui-month-start-on-or-after (date) def= (33)
⌊
standard-from-universal

(moon , chinese-location (date))
⌋

where

sun = universal-from-standard( ⌊
standard-from-universal(

solar-longitude-after (270◦, date),

chinese-location (date)
) ⌋

,

chinese-location (date)
)

moon = lunar-phase-at-or-before (0◦, sun + 1)

For the Indian calendars, the functions should use sidereal longitudes and
can be traditional or astronomical, as desired. Using the astronomical code of
CC, we can define:

sidereal-solar-longitude-after (φ, t) def= (34)

u−l<ε

MIN
x∈[a,b]

{
((sidereal-solar-longitude (x) − φ) mod 360) < 180◦

}

where

ε = 10−5,

rate =
average-year-length

360◦
,
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τ = t + rate × ( (
φ − sidereal-solar-longitude (t)

)
mod 360

)
,

a = max {t, τ − 5} ,

b = τ + 5.

The function MIN performs a bisection search in [a, b] with accuracy ε.
For the traditional Hindu calendar, we would use (18.50) in CC,

hindu-solar-longitude-at-or-after instead of sidereal-solar-longitude-
after, and use the following in place of lunar-phase-at-or-before:

hindu-lunar-phase-at-or-before (φ, t) def= (35)

u−l<ε

MIN
x∈[a,b]

{
((hindu-lunar-phase (x) − φ) mod 360) < 180◦

}
,

where

ε = 2−17,

τ = t −hindu-synodic-month× 1
360

× ((hindu-lunar-phase (t) − φ) mod 360) ,

a = τ − 2,

b = min {t, τ + 2} .

Then we can use the following to compute the start of Indian lunisolar
month m:

hindu-lunar-month-on-or-after (m, date) def= (36)
{

date if moon ≤ hindu-sunrise (date),

date + 1 otherwise,

where

λ = (m − 1) × 30◦,
sun = hindu-solar-longitude-after (λ, date) ,

moon = hindu-lunar-phase-at-or-before (0◦, sun) ,

date = �moon� ,

The time of the tithis (lunar “days,” corresponding to 30ths of the lunar
phase cycle) differs an average of less than 13min between the traditional and
astronomical calculations (again in 1000 c.e.). See Fig. 3.
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Figure 4 shows the same (nil) impact of sine and epicycle (using the biggest
epicycle) on the calculation of lunar sidereal longitude as we found in the solar
case. Moreover, the sixteenth century correction (b̄ıja) of Gann. esa Daivajna
for the length of the anomalistic months (from 488,203 revolutions of the
apogee in a yuga to 488,199) also is of no consequence (in the sixteenth century
as well as in the 11th). The difference between the calculated longitude and
astronomical values was 1◦56′ ± 3◦25′.

In the true version of the Indian lunisolar calendar, months, called kshaya,
may also be expunged when two zodiacal sign transitions occur in one lunar
month. Thus, even a 12-month year can have a leap month (as was the case
in 1963–1964), and a leap year can even have two (as in 1982–1983). See our
Calendrical Tabulations [6]. The code above does not check whether month
m is expunged.

There are several competing conventions as to the placement and naming
of leap months and excision of suppressed months; see [8, p. 26].

7 Sunrise

Generally, Indian calendarists advocate the use of geometric sunrise for cal-
endrical determinations:6

hindu-sunrise (date) def= dawn (date,hindu-locale, 0◦) . (37)

Lahiri, however, suggests a depression angle of 47′ (including 31′ for refrac-
tion); astronomers typically use 50′.

As is well known, the original siddhāntic calculation for sunrise uses a
simple approximation for the equation of time. Figure 5 compares the two
versions. Using an accurate equation of time, but otherwise following the
siddhāntic method for sunrise, gives close agreement with geometric sunrise.
See Fig. 6.

8 Holidays

Many of the holidays in India depend on the local lunisolar calendar. Table 5
lists some of the more popular holidays. (For a comprehensive list in English,
see [9].) There is a very wide regional variance in timing and duration of
holidays.

In general, holidays do not occur in leap months or on leap days. If a
month is skipped, as happens intermittently (with gaps of 19–141 years be-
tween occurrences), then the “lost” holidays are moved to the next month,
6 Pal Singh Purewal [personal communication, April 29, 2002]: “Most Indian al-

manac editors give and advocate the use of the centre of the solar disk for sunrise
without refraction.”
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Fig. 5. The equation of time in 1000 c.e. The astronomical version is shown as
a solid line; the Hindu version is shown as a dashed line. The left vertical axis is
marked in minutes and the right vertical axis is marked in fractions of a day

depending again on regional conventions. In many places, rather than skip
a whole month, two half months are skipped and their holidays are moved
backward or forward, depending on which lost half-month they are meant to
occur in.

The precise day of observance of a lunisolar event usually depends on the
time of day (sunrise, noon, midnight, etc.) at which the moon reaches a critical
phase (tithi). According to [5], for example, Ganēśa Chaturth̄ı is celebrated
on the day in which tithi (lunar day) 4 is current in whole or in part during
the midday period from 10:48 a.m. to 1:12 p.m. (temporal time). If that lunar
day is current during that time frame on two consecutive days, or if it misses
that time frame on both days, then it is celebrated on the former day.7

Some functions for holiday calculations are provided in Sect. 19.6 of CC.

7 Precise details for the individual holidays are difficult to come by.
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Fig. 6. Sunrise, Hindu and astronomical, 1000 c.e. difference in sunrise times is
shown as a solid line; the difference of just the equation of time calculation is shown
as a dashed line. The vertical scale is in minutes

Table 5. Some Hindu lunisolar holidays

Holiday Lunar date(s)

New Year (Chandramana Ugadi) Caitra 1
Birthday of Rāma Caitra 9

Birthday of Krishna (Janmāsht.amı̄) Śrāvan. a 23
Ganēśa Chaturth̄ı Bhādrapada 3 or 4
Dashara (Nava Rathri), last 3 days Āśvina 8–10
Diwali, last day Kārtika 1
Birthday of Vishnu (Ekadashi) Mārgaś̄ırs.a 11

Night of Śiva Māgha 28 or 29
Holi Phālguna 15
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Appendix: The Lisp Code

This appendix contains the Common Lisp source code for the algorithms
presented in the preceding sections. CC should be consulted for undefined
functions and macros.

1 (defun fixed-from-single-cycle (s-date)

2 ;; TYPE single-cycle-date -> fixed-date

3 (let* ((year (standard-year s-date))

4 (month (standard-month s-date))

5 (day (standard-day s-date)))

6 (+ single-cycle-epoch

7 (floor (+ (* (1- year) average-year-length)

8 delta-year))

9 (floor (+ (* (1- month) average-month-length)

10 delta-month))

11 day -1)))

1 (defun single-cycle-from-fixed (date)

2 ;; TYPE fixed-date -> single-cycle-date

3 (let* ((days (- date single-cycle-epoch))

4 (year (ceiling (- days -1 delta-year)

5 average-year-length))

6 (n (- days (floor (+ delta-year

7 (* (1- year) average-year-length)))))

8 (month (ceiling (- n -1 delta-month) average-month-length))

9 (day (- n -1 (floor (+ delta-month

10 (* (1- month)

11 average-month-length))))))

12 (hindu-solar-date year month day)))

1 (defun alt-fixed-from-single-cycle (s-date)

2 ;; TYPE single-cycle-date -> fixed-date

3 (let* ((year (standard-year s-date))

4 (month (standard-month s-date))

5 (day (standard-day s-date)))

6 (+ single-cycle-epoch

7 (ceiling (- (* (1- year) average-year-length)

8 delta-year))

9 (ceiling (- (* (1- month) average-month-length)

10 delta-month))

11 day -1)))

1 (defun alt-single-cycle-from-fixed (date)

2 ;; TYPE fixed-date -> single-cycle-date

3 (let* ((days (+ (- date single-cycle-epoch) delta-year))

4 (year (1+ (quotient days average-year-length)))

5 (n (+ (floor (mod days average-year-length)) delta-month))

6 (month (1+ (quotient n average-month-length)))
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7 (day (1+ (floor (mod n average-month-length)))))

8 (hindu-solar-date year month day)))

1 (defun var-fixed-from-single-cycle (s-date)

2 ;; TYPE single-cycle-date -> fixed-date

3 (let* ((year (standard-year s-date))

4 (month (standard-month s-date))

5 (day (standard-day s-date))

6 (mean-month-length (/ average-year-length

7 months-per-year)))

8 (+ single-cycle-epoch

9 (floor (+ (* (1- year) average-year-length)

10 delta-year

11 (* (1- month) mean-month-length)))

12 day -1)))

1 (defun var-single-cycle-from-fixed (date)

2 ;; TYPE fixed-date -> single-cycle-date

3 (let* ((days (- date single-cycle-epoch))

4 (offset (- days -1 delta-year))

5 (year (ceiling offset average-year-length))

6 (mean-month-length (/ average-year-length

7 months-per-year))

8 (m-prime (1- (ceiling offset mean-month-length)))

9 (month (+ 1 (mod m-prime months-per-year)))

10 (day (- days -1

11 (floor

12 (+ delta-year

13 (* m-prime mean-month-length))))))

14 (hindu-solar-date year month day)))

1 (defun alt-var-fixed-from-single-cycle (s-date)

2 ;; TYPE single-cycle-date -> fixed-date

3 (let* ((year (standard-year s-date))

4 (month (standard-month s-date))

5 (day (standard-day s-date))

6 (mean-month-length (/ average-year-length

7 months-per-year)))

8 (+ single-cycle-epoch

9 (ceiling (+ (* (1- year) average-year-length)

10 (- delta-year)

11 (* (1- month) mean-month-length)))

12 day -1)))

1 (defun alt-var-single-cycle-from-fixed (date)

2 ;; TYPE fixed-date -> single-cycle-date

3 (let* ((days (+ (- date single-cycle-epoch) delta-year))

4 (mean-month-length (/ average-year-length

5 months-per-year))

6 (year (1+ (quotient days average-year-length)))
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7 (month (+ 1 (mod (quotient days mean-month-length)

8 months-per-year)))

9 (day (1+ (floor (mod days mean-month-length)))))

10 (hindu-solar-date year month day)))

1 (defun true-longitude (date)

2 ;; TYPE moment -> longitude

3 (solar-longitude (critical-time date)))

1 (defun solar-new-year-on-or-after (date)

2 ;; TYPE fixed-date -> fixed-date

3 ;; Fixed date of solar new year on or after fixed date.

4 (let* ((lambda (true-longitude date))

5 (start

6 (+ date -5

7 (floor (* average-year-length 1/360

8 (mod (- critical-longitude lambda) 360))))))

9 (next d start

10 (<= critical-longitude

11 (true-longitude d)

12 (+ critical-longitude 2)))))

1 (defun hindu-solar-new-year (g-year)

2 ;; TYPE gregorian-year -> fixed-date

3 ;; Fixed date of Hindu solar New Year in Gregorian year.

4 (solar-new-year-on-or-after

5 (fixed-from-gregorian

6 (gregorian-date g-year january 1))))

1 (defun solar-from-fixed (date)

2 ;; TYPE fixed-date -> solar-date

3 ;; Solar date equivalent to fixed date.

4 (let* ((lambda (true-longitude date))

5 (m (quotient lambda (deg 30)))

6 (year (round (- (/ (- (critical-time date) solar-epoch)

7 average-year-length)

8 (/ lambda (deg 360)))))

9 (approx ; 3 days before start of mean month.

10 (- date 3

11 (mod (floor lambda) (deg 30))))

12 (begin ; Search forward for beginning...

13 (next i approx ; ... of month.

14 (= m (quotient (true-longitude i)

15 (deg 30))))))

16 (hindu-solar-date year (1+ m) (- date begin -1))))

1 (defun orissa-critical (date)

2 ;; TYPE fixed-date -> moment

3 ;; Universal time of critical moment on or after date

4 ;; according to the Orissa rule

5 (hindu-sunrise (1+ date)))
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1 (defun tamil-critical (date)

2 ;; TYPE fixed-date -> moment

3 ;; Universal time of critical moment on or after date

4 ;; according to the Tamil rule

5 (hindu-sunset date))

1 (defun malayali-critical (date)

2 ;; TYPE fixed-date -> moment

3 ;; Universal time of critical moment on or after date

4 ;; according to the Malayali rule

5 (+ (hindu-sunrise date)

6 (* 3/5 (- (hindu-sunset date) (hindu-sunrise date)))))

1 (defun madras-critical (date)

2 ;; TYPE fixed-date -> moment

3 ;; Universal time of critical moment on or after date

4 ;; according to the Madras rule

5 (+ (hindu-sunset date)

6 (* 1/2 (- (hindu-sunrise (1+ date)) (hindu-sunset date)))))

1 (defconstant sidereal-start

2 (precession (universal-from-local

3 (mesha-samkranti (ce 285))

4 hindu-locale)))

1 (defun sidereal-solar-longitude (tee)

2 ;; TYPE moment -> angle

3 ;; Sidereal solar longitude at moment tee

4 (mod (+ (solar-longitude tee)

5 (- (precession tee))

6 sidereal-start)

7 360))

1 (defun sui-month-start-on-or-after (date)

2 ;; TYPE fixed-date -> fixed-date

3 ;; Fixed date of start of Chinese month containing solstice

4 ;; occurring on or after date.

5 (let* ((sun (universal-from-standard

6 (floor (standard-from-universal

7 (solar-longitude-after (deg 270) date)

8 (chinese-location date)))

9 (chinese-location date)))

10 (moon (lunar-phase-at-or-before (deg 0) (1+ sun))))

11 (floor (standard-from-universal moon (chinese-location date)))))

1 (defun sidereal-solar-longitude-after (phi tee)

2 ;; TYPE (season moment) -> moment

3 ;; Moment UT of the first time at or after tee

4 ;; when the sidereal solar longitude will be phi degrees.

5 (let* ((varepsilon 1d-5) ; Accuracy of solar-longitude.

6 (rate ; Mean days for 1 degree change.
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7 (/ average-year-length (deg 360)))

8 (tau ; Estimate (within 5 days).

9 (+ tee

10 (* rate

11 (mod (- phi (sidereal-solar-longitude tee)) 360))))

12 (a (max tee (- tau 5))) ; At or after tee.

13 (b (+ tau 5)))

14 (binary-search ; Bisection search.

15 l a

16 u b

17 x (< (mod (- (sidereal-solar-longitude x) phi) 360)

18 (deg 180l0))

19 (< (- u l) varepsilon))))

1 (defun hindu-lunar-phase-at-or-before (phi tee)

2 ;; TYPE (phase moment) -> moment

3 ;; Moment UT of the last time at or before tee

4 ;; when the Hindu lunar-phase was phi degrees.

5 (let* ((varepsilon (expt 2 -17)) ; Accuracy.

6 (tau ; Estimate.

7 (- tee

8 (* hindu-synodic-month 1/360

9 (mod (- (hindu-lunar-phase tee) phi) 360))))

10 (a (- tau 2))

11 (b (min tee (+ tau 2)))) ; At or before tee.

12 (binary-search ; Bisection search.

13 l a

14 u b

15 x (< (mod (- (hindu-lunar-phase x) phi) 360)

16 (deg 180l0))

17 (< (- u l) varepsilon))))

1 (defun hindu-lunar-month-on-or-after (m date)

2 ;; TYPE (hindu-lunar-month fixed-date) -> fixed-date

3 ;; Fixed date of first lunar moon on or after fixed date.

4 (let* ((lambda (* (1- m) (deg 30)))

5 (sun (hindu-solar-longitude-after lambda date))

6 (moon (hindu-lunar-phase-at-or-before (deg 0) sun))

7 (date (floor moon)))

8 (if (<= moon (hindu-sunrise date))

9 date (1+ date))))

1 (defun hindu-sunrise (date)

2 ;; TYPE fixed-date -> moment

3 ;; Geometrical sunrise at Hindu locale on date.

4 (dawn date hindu-locale (deg 0)))
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India’s Contributions to Chinese Mathematics

Through the Eighth Century C.E.∗
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1 Buddhism: The Medium of Interaction

The rock edicts of King Aśoka (third century b.c.e.) show that he had already
paved the way for the expansion of Buddhism outside India.2 Subsequently,
Buddhist missionaries took Buddhism to Central Asia, China, Korea, Japan,
and Tibet in the north, and to Burma, Ceylon, Thailand, Cambodia, and
other countries of the south. This helped in spreading Indian culture to
these countries. It is aptly observed that “Buddhism was, in fact, a spring
wind blowing from one end of the garden of Asia to the other end causing
to bloom not only the lotus of India, but the rose of Persia, the temple
flower of Ceylon, the zebina of Tibet, the chrysanthemum of China and the
cherry of Japan. It is also said that Asian culture is, as a whole, Buddhist
culture.”3 Moreover, some of these countries received with Buddhism
not only their religion but practically the whole of their civilization and
culture.

The generally accepted view is that China received Buddhism from the
nomadic tribes of Eastern Turkestan toward the end of the first century
b.c.e., although there is evidence to show that Indians had gone there ear-
lier to propagate the faith.4 The Chinese tradition narrates that the Han
emperor, Ming-Ti (first century c.e.), had sent an embassy to India to

∗ Reprinted from Gan. ita Bhārat̄i, Vol. 11: 38–49, 1989, with a change of title.
1 R. C. Gupta has been a professor of Mathematics at the Birla Institute of Tech-

nology, Mesra Ranchi, India, and the editor of Gan. ita Bhārat̄i, the Bulletin of
the Indian Society for History of Mathematics. His areas of interest include the
History of mathematics and mathematics education.

2 Bapat, P. V. (general editor): 2500 Years of Buddhism. Publications Division,
Delhi, p. 53 (1964).

3 Ibid., p. 397.
4 Ibid., pp. 59 and 110.

B.S. Yadav and M. Mohan (eds.), Ancient Indian Leaps into Mathematics, 33
DOI 10.1007/978-0-8176-4695-0 2, c© Springer Science+Business Media, LLC 2011

Pure Mathematical Physics



34 R. C. Gupta

bring back Buddhist priests and scriptures.5 Consequently, two Indian monks,
Kia-yeh Mo-than (Kāśyapa Mātaṅga) and Chu-fa-lan (probably Dharmaratna
or Gobharana), reached the Han capital, Loyang. They learned Chinese and
translated Buddhist books, the first of which was Foshuo-ssu-shih-erh-cheng-
ching (the Sūtra of 42 Sections Spoken by Buddha).6 With the arrival of more
monks, both from India and Central Asia, the Loyang monastery became a
centre of Indian culture. A large number of Indian books were translated,
and people began to adopt Buddhist monastic rituals. Buddhism prevailed so
extensively that by the sixth century, the number of monasteries had rise to
about 30,000, and the number of monks and nuns to two million.7

The tradition of the Buddhist educational system gave birth to large-
scale monastic universities. Some of these famous universities were Nālandā,
Valabh̄i, Vikramśilā, Jagaddala, and Odantapur̄i. They attracted students
and scholars from all parts of Asia. Of these, the Nālandā university was
most famous, with about ten thousand students and fifteen hundred teachers.
The range of studies covered both sacred and secular subjects of Buddhist as
well as Brahminical learning. The monks eagerly studied, besides Buddhist
works (including Abhidharma-kośa), the Vedas, medicine, arithmetic, occult
sciences, and other popular subjects.8 There was special provision for the
study of astronomy, and it is said that the university included an astronomical
observatory.9

According to the findings of a modern Chinese historian (Liang Chi-Chao),
more than 160 Chinese pilgrims and scholars came to India between the fifth
and eighth centuries.10 Of these, Fa-Hien (fifth century), Yuan Chwang (sev-
enth century), and I-tsing (eighth century) are the most famous. Some of them
stayed and studied in India for several years. They returned to their homeland
with many Pali and Sanskrit works, hundreds of which were translated into
Chinese.

2 Indian Astronomy and Mathematics in Ancient China

We have seen that Buddhism was the medium for cultural exchange between
India and China, providing opportunities for the exchange of ideas. Buddhism
exerted great influence in various fields in China and was the main vehicle for
transmission of Indian scientific ideas to that land. The influence was so great

5 Mukherjee, P. K.: Indian Literature Abroad (China). Calcutta Oriental Press,
Calcutta, p. 1 (1928).

6 Ibid., pp. 2–3.
7 Chou Hsiang-Kuang: The History of Chinese Culture. Central Book Depot,

Allahabad, p. 106 (1958).
8 Bapat (ref. 2), p. 239, and Mukherjee (ref. 5), pp. 78–79.
9 See K. S. Shukla, Āryabhat.a (booklet), New Delhi, p. 5 (1976).

10 Bapat (ref. 2), pp. 163–164.
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that even scientists embraced the new faith. For instance, the astronomer
Han Chai and the mathematician Wang Fan (about 200 c.e.) both became
Buddhists (Mikami, p. 57). A great deal of Indian astronomy and mathematics
became known in China through the translation of Indian works, and through
the visits of Indian scholars. We shall briefly outline the broad facts in this
section.

The Mātaṅga-avadāna was translated (or retranslated) into Chinese in
about the third century c.e., although the original is believed to date ear-
lier.11 It gives the lengths of monthly shadows of a 12-inch gnomon, which is
the standard parameter of Indian astronomy. The work also mentions the 28
Indian naks.atras. .

Śārdūlakarn. āvadāna was translated into Chinese several times, beginning
in the second century. This work contains the usual Sanskrit names of the
28 naks.atras. starting with kr. ttikā, but the number of grahas mentioned is
only seven, excluding thereby Rāhu and Ketu, which were often added in the
manuscripts and translations.12 The measures of shadows for various parts of
the day mentioned in the work (pp. 54–55) are the same as in the Atharva
Vedāṅga Jyotis.a, verses 6 to 11.

Lalitavistara is another work that was translated into Chinese several
times from the first century onward. It is in this work that the famous
Buddhist centesimal-scale counting occurs during the dialogue between Prince
Gautamaand the mathematician Arjuna. The first series of counts ends with
tallaks.an. a (= 1053), beyond which eight more gan. anā series are mentioned.13

Atomic-scale counting is also mentioned (there being 710 paraman. us in one
aṅgulaparva) (p. 104).

Vasubandhu (fourth century) was so honoured for his work that he was
known as the Second Buddha. His Abhidharma-kośa, in which he wrote his
own commentary, is an encyclopedic work that played an important role
in propagating Buddhist philosophy and thought in Asia. It was translated
into Chinese and Tibetan. It contains early Buddhist ideas in cosmography
(Jambūdv̄ipa being given the form of a śakat.a) and astronomy (sun and moon
revolving around the Meru).14 It is through this work that we know that the
Buddhist school used 60 decuple terms in decimal counting.15

11 Yabuuti, K.: Indian and Arabian Astronomy in China. In: The Silver Jubilee
volume of the Zinbun-Kagaku-Kenkyusyo, Kyoto, pp. 585–603 (1954).

12 Mukhopadhyay, S. K. (ed.): The Śārdūlakarāvadāna. Visvabharati, Santiniketan,
pp. 46–53 and p. 104 (1954).

13 Vaidya, P. L. (ed.): Lalitavistara. Darbhanga, p. 103 (1958). The last number in
the final count will be equal to 107+9×46 = 10421.

14 Abhidharmakośa edited by Dvārikadas Sastri, 2 Volumes, Varanasi, III, 45–60
(1981) (Vol. I, pp. 506–518).

15 Ibid., p. 544.
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The Mahāprajñā-pāramitā Śāstra (of Nāgarjuna, second century) was
translated into Chinese by Kumāraj̄iva in the early fifth century.16 The as-
tronomical parameters mentioned in this translation are comparable to those
given in the Vedāṅga Jyotis.a.17

Bodhiruci I arrived in China (from central India) in 508 c.e., and is said
to have translated several Indian astronomical books into Chinese.18

An Indian system of numeration appeared in the Chinese work Ta Pao
Chi Ching (Mahāratnakūta Sūtra), translated by Upaśūnya (in 541 c.e.).19

Paramārtha (Po-lo-mo-tho), a native of Ujjain, arrived in China in
548 c.e. and translated about 70 works including the Abhidharmakośa
(vyākhyā)-śāstra and the Lokasthiti-abhidharmaśāstra (which has astronomi-
cal content).20

There was a brief setback to Indian activities in China when Wu-Ti came
to power in 557 c.e., but they were resumed during the Sui Dynasty (581–618
c.e.). The Indian pan.d. ita, Narendrayaśas, was recalled from exile in 582 c.e.
Among the works he translated was the Mahāvaipulya Mahāsannipāta Sūtra,
from Sanskrit. It contains naks.atras, the zodiacal cycle, calendrical material,
and other Indian astronomical theories.21

The Chinese translations of the following works are mentioned in the Sui
Shu, or Official History of the Sui Dynasty (seventh century):22

1. Po-lo-mên Thien Wên Ching (Brahminical Astronomical Classic) in 21 books.
2. Po-lo-mên Chieh-Chhieh Hsien-jen Thien Wên Shuo (Astronomical Theories of

Brāhman. a Chieh-Chhieh Hsienjen) in 30 books.
3. Po-lo-mên Thien Ching (Brahminical Heavenly Theory) in one book.
4. Mo-têng-Chia Ching Huang-thu (Map of Heaven in the Mātaṅḡi Sūtra) in one

book.
5. Po-lo-mên Suan Ching (Brahminical Arithmetical classic) in three books.
6. Po-lo-mên Suan Fa (Brahminical Arithmetical Rules) in one book.
7. Po-lo-mên Ying Yang Suan Ching (Brahminical Method of Calculating Time)

in one book.

16 Bapat (ref. 2), p. 115.
17 Chin Keh-mu, “India and China: Scientific Exchange” in D. Chattopadhyaya

(ed.): Studies in History of Science in India. Vol. II, pp. 776–790, (1982) (Solar
month 30 1

2
days (year = 366 d.), P = 27 21

60
(cf. 27 21

67
), and S = 29 30

62
(cf. 29 32

62
).

18 Mukherjee (ref. 6), p. 38.
19 Needham, J.: Science and Civilization on China. Vol. III, Cambridge, UK, p. 88

(1959).
20 See Bapat (ref. 2), p. 214; Mukherjee (ref. 5), p. 34; and Needham (ref. 19), p.

707, where the Chinese title of the second work appears as Li Shih A-Pi-Than
Lun (Philosophical Treatise on the Preservation of the World).

21 Needham, J. (ref. 19), p. 716, and Chin Keh-mu (ref. 17), p. 784.
22 Gupta, R. C.: Indian Astronomy in China During Ancient Times.

Vishveshvaranand Indological Journal, XIX, 266–276, p. 270 (1981).
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Although these translations are lost, they were also mentioned in other
sources.

More vigorous contacts and activities took place during the glorious period
of the Tang Dynasty (618–907 c.e.). In response to an envoy sent by the Indian
king Hars.avardhana in 641 c.e. to China, two missions came from there to
India. Hiuen Tsang (or Yuan Chwang) needed 22 horses to carry the works
that he took from India to China in 645. He translated 75 of these, including
Abhidharmakośa.

The great influence of Indian astronomy at that time can be seen by the
presence of a number of Indian astronomers in the Chinese capital Chang-Nan,
where there was a school in which Indian sidhāntas were taught.23 In fact,
there were three clans of Indian astronomers, namely Kāśyapa, Gotama, and
Kumāra. These Indians were employed in the Chinese National Astronomical
Bureau and helped in improving the local calendar.

The greatest of these was Gotama Siddha (or Gautama Siddhārtha). He
became the president of the Chinese Astronomical Board and director of the
royal observatory. Under imperial order (from Hsuan-tsung) he translated
the famous Chiu Chih Li (“Navagraha Karan.a”) from Indian astronomical
material in 718 c.e. A few years later, he compiled the Khai-Yuan Chan
Ching (the Khai Yuan Treatise on Astronomy and Astrology) in 120 volumes,
of which the 104th is the Chiu Chih Li. It includes the Indian sine table (R = 3,
438, h = 225min) and Indian methods of calculation with nine numerals and
zero (denoted by a thick dot •). The astronomy was based on nine planets,
including Lo-hou and Chi-tu (which are Chinese forms of the Sanskrit names
Rāhu and Ketu).24

3 Earlier Chinese Parallels of Indian Mathematical
Pieces

Before addressing the question of mutual transmissions further, we shall first
mention the close resemblances that exist between some mathematical prob-
lems, rules, and formulas as found in China and India.

(I) The Broken Bamboo Problem (������ �	
� 
���
)

In China this is found in the famous Chiu Chang Suan Shu (Nine Chapters on
the Mathematical Art), whose present text is placed in the first century c.e.
Its ninth chapter, entitled “kou ku” (Right Triangles), contains the following
problem:25

23 Ibid., pp. 271–273.
24 The work has been fully translated with notes by Kiyori Yabuuti in his paper

“Researches on the Chiu-Chih Li Indian Astronomy under the Thang Dynasty”
Acta Asiatica, Vol. 36, pp. 7–48 (1979).

25 Waerden, B. L. van der: Geometry and Algebra in Ancient Civilization. Springer–
Verlag, Berlin, p. 53 (1983).
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Problem 13: A bamboo is 1 chang (= 10 Chhih) tall. It is broken,
and the top touches the ground 3 chhih from the root. What is the
height of the break?

Fig. 1. The bamboo problem
Fig. 2. Solution to the
bamboo problem

The solution to the problem is (see Fig. 1)

y = (h − x2/h)/2 = 4
11
20

chhih.

It is understood that the solution is based on the Pythagorean property, so
that

y + z = h and z2 − y2 = x2.

One of the two similar examples given by Bhāskara I (629 c.e.) reads26

a���
��	����	 ���	 ����� �����	 �� ���� ।
��� ������ �����!"�# $� �% ���&� �'�
!���� ॥

as.t.ādaśakocchāyo vaṁśo vātena pātito mūlāt
s.ad. gatvāa. sau patitastribhujaṁ kr. tvākv bhagnah. syāt

A bamboo of height 18 is felled by the wind. It falls at (a distance of)
6 from the root (thus) forming a triangle. Where is the break?

26 Shukla, K. S. (ed.); Āryabhat̄iya with the commentary of Bhāskara I and
Someśvara, INSA, New Delhi, India, pp. 99–100 (1976).
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Bhāskara’s solution is based on applying the relation (see Fig. 2)

GF · GE = GB2,

which is given in Āryabhat. īya II, 17 (second half), on which he is commenting.
He gets

GE = x2/h = 2 = z − y.

Then doing saṁkraman. a with z + y = 18, he found z and y to be 10 and 8.

(II) Problem of a Reed in a Pond (���	dv���
)

This is problem no. 6 in the ninth chapter of the Chiu Chang Suan Shu:27

There is a pond whose section is a square of side 1 chang (= 10 chhih).
A reed grows at its centre and extends 1 chhih above the water. If the
reed is pulled to the side (of the pond), it reaches the back precisely.
What are the depth of the water and the length of the reed?

The solution given28 is x = (z2 − e2)/2e, where z is half the side of the
pond, and y = x + e (see Fig. 3).

Bhāskara I’s first similar example (out of two) reads29

Fig. 3. The reed problem
Fig. 4. Solution to the
reed problem

27 Waerden, B. L. van der (ref. 25), pp. 50–51.
28 Swetz, Frank: The Amazing Chiu Chang Suan Shu. Math. Teacher, 65, 423–430,

p. 429. Translation kindly supplied by D. B. Wagner.
29 Shukla (ed.), op. cit. (ref. 26), pp. 100–102. Shukla’s remark (p. 299) that the

Chinese and Hindu solutions are “quite different” is not justified, since both are
ultimately based on the Pythagorean property. The relation BC = y + x = z2/e
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���� $���pr
% +�� ������������ ,�# �� �������।
�-�� �.$�� /!�� , �-01� ����2��-�����॥

kamalṁ jalātpradr. śyaṁ vikasitamas. t.āńg. gulaṁ nivāten
nītaṁ majjati haste, śīghraṁ kamalāmbhasī vācye

A lotus in full bloom of 8 an. gulas is visible (just) above the water.
When carried away by the wind, it submerges just at the distance of 1
hasta (= 24 an.gulas). Tell quickly (the height of) the lotus plant and
(the depth of) the water.

His solution is again based on the same property of chords, namely (Fig. 4)

BC = BM2/AB = z2/e.

And then applying saṁkraman. a to y +x = z2/e and y−x = e, he gets
the height of the lotus y and the depth of the water x as 40 and 32 (an.gulas).
On simplification, Bhāskara’s solution

x =
1
2

(
z2

e
− e

)

becomes the same as the Chinese solution

(III) Approximate Volumes of a Sphere

The Chiu Chang Suan Shu (first century c.e.) used the approximate rule:

V =
9
2
r3 (11)

for calculating the diameter of a sphere when its volume V is known.30 In
India, Bhāskara I quotes a rule that gives (11) directly:31

3����454�� ����� ���# �6���	 �# 7!� 0���6��� ।

vyāsārdhadhanaṁ bhitvā navagun. itamayo gud. asya ghanagan. itam

The product of 9 and half the cube of the radius is the ball’s volume.

follows from the property of chords (which itself is based on the Pythagorean
property) or from y2 − x2 = z2 and y − x = e. The slight difference in methods
is not significant.

30 Mikami, Y.: The Development of Mathematics in China and Japan, reprinted by
Chelsea, New York, p. 14 (1961).

31 Shukla (ref. 26), p. 61.
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Two centuries later, Mahāvīra (about 850 c.e.) gave the same rule and re-
garded it, like Bhāskara, as only a vyāvahārika, or practical (not exact), rule.32

The same is also found in other Jaina works such as Tiloyasāra (gāthā 19) of
Nemicandra (about 975 c.e.) and the Gan. itasāra (V. 25) of T. hakkura Pheru
(about 1300 c.e.). This shows a Jaina tradition for (11).

Another item of interest is that in China, Liu Hui (third century) inter-
preted (11) wrongly as equivalent to33

V =
π2

2
r3. (12)

In India also, Mahāv̄ira seems to have thought that (11) was based on (12)
with the practical value π = 3. He further derived a better formula by taking
π =

√
10, which he considered to be sūks.ma.34

(IV) The Problem of 100 Chickens

In China, the earliest statement of the problem of a hundred chickens is found
in the Chang Chhiu-Chien Suan Ching (Arithmetical Classic of Chang Chhiu-
Chien), which is generally placed in the second half of the fifth century. It runs
as follows:35

A cock costs 5 pieces (wên) of money, a hen 3 pieces, and 3 chickens
1 piece. If we buy, with 100 pieces, 100 birds, what will be their re-
spective numbers?
(Answers: 4 + 18 + 78; 8 + 11 + 81; 12 + 4 + 84.)

A century later, Chen Luan gave two similar problems with cost 5, 4, 1/4,
(Answer: 15 + 1 + 84), and 4, 3, 1/3 (Answer: 8 + 14 + 78)36.
In India such problems appear in the Bakshāli Manuscript (whose exact

date is uncertain or controversial). One problem relates to buying a total of
20 animals (monkeys, horses, and deer) for a total of 20 pan. as at costs 1/4
(say), 4 and 1/2. (Answer: 2 + 5 + 15.)37

32 Jain, L. C. (ed.): Gan. itasārasaṅgraha (with Hindi translation), Sholapur, III, 28,
p. 259 (1963).

33 Wagner, D.B.: “Liu Hui and Tsu Keng-chih on the Volume of a Sphere,” Chinese
Science, No. 3, 59–79, p. 60 (1978).

34 Gupta, R. C.: “Volume of a Sphere in Ancient India,” paper presented at the
Seminar on Astronomy and Mathematics in Ancient India, Calcutta, May 19–21,
1987, has details.

35 Mikami (ref. 30), p. 43. On p. 39 he says that the work “probably belongs to
latter half of the sixth century.”

36 Ibid., p. 44.
37 Hayashi, Takao: The Bakshali Manuscript, Ph.D. thesis, Brown University,

p. 649 (1985). He places the work in the seventh century, which is somewhere in
the middle of the early (fourth century) and late (tenth century) dates assigned
to it.
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Another similar example relates to prices or earnings of men, women, and
śūdras or children at rates 3, 3/2, and 1/2. (Answer: 2 + 5 + 13.)38

An example of buying 100 birds (pigeons, cranes, swans, and peacocks)
with 100 rūpas (or pan. as) with rates 3/5, 5/7, 7/9, 9/3 occurs in
Śrīdhara’s Pātīgan. ita (Ex. 78–79) (eighth century) as well as in Mahāvīra’s
Gan. itasārasaṅgraha (VI, 152–153) (ninth century).39 This problem was quite
popular in India, and one of the many solutions is 15 pigeons, 28 cranes, 45
swans, 12 peacocks.40 Similar problems were also popular in other parts of
the world, as shown by works, of various authors starting with Alcuin (ninth
century).41

In simple matters, like the use of π = 3, we may accept independent
discoveries or inventions by different cultural groups. But when specific char-
acteristic rules and problems, such as (I)–(IV) considered above, are found
to occur in different cultural areas, we have to favor a theory of diffusion. Of
course, there may have been an older common source from which material
was possibly transmitted to the various cultural areas. B.L. van der Waerden
(p. 66) considers a pre-Babylonian common source for Chinese and Babylonian
algebra. In fact, he has formulated the thesis of a common Indo-European ori-
gin of mathematics that flowed to China, India, Babylonia, Greece, and Egypt
(pp. 67–69). We have evidence that some peculiar rules such as the “surveyor’s
rule” for the area of a quadrilateral42 and the use of h(c + h)/2 (or its other
derived forms) for the area of a segment of a circle were widely diffused.

Regarding pieces of (I)–(IV) discussed above, we have not come across
specific earlier instances in which these are found as such. It is therefore to
be presumed that there was some interaction that ultimately led to trans-
mission between China and India. We have already noted above that even
Chinese mathematicians, such as Wag Fan (about 200 c.e.), became Bud-
dhists (Mikami, ref. 28, 57). Needham43 mentions the monk Than Ying (about
440 c.e.), who could have been a teacher of Chiu Chang Suan Shu and com-
mentary by Liu Hui.

References to Buddhism and Buddhist works are found even in the math-
ematical treatises of China such as the Sun Tzu Suan Ching or Arithmetical
Manual of Master Sun, which is placed44 between 280 and 473 c.e. Master
38 Ibid., p. 650; and David Singmaster, Sources in Recreational Mathematics, 3rd

Preliminary Edition, p. 139, June 1988.
39 Shukla, K. S. (ed.): The Patiganita of Sridharacarya, Lucknow, pp. 80–83

(1959)(text) and 50–51 (transl.), Jain (ref. 30), p. 131.
40 Shukla (ref. 39) has given all the 16 solutions. Also see Hayashi (ref. 37), p. 650,

for more references.
41 Singmaster, op. cit. (ref. 38), pp. 139–144.
42 Gupta, R. C.: The Process of Averaging in Ancient and Medieval Mathematics.

Gan. ita Bhārat̄i, III, 32–42 (1981).
43 Needham (ref. 19), p. 149.
44 Mikami (ref. 30), p. 26.
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Sun’s work is important for early indeterminate analysis in China. Chen Luan
(sixth century), who was also interested in indeterminate analysis, was an ar-
dent believer of Buddhism. He read Buddhist works profoundly and mentioned
them in his writings.

At least some of the Indian scholars who visited China must have become
familiar to some extent with the local mathematical traditions, especially the
more popular common and recreational types of problems. Some of these In-
dians frequently returned to India (if only temporarily). In addition, Chinese
pilgrims, scholars, and envoys (including diplomats) who visited India may
have taken some Chinese mathematical classics, such as the famous Chiu
Chang Suan Shu, with them. Books may have been part of gifts that may
have been presented to the kings or universities. All such things indicate a
strong possibility of mathematical interaction between China and India. But
while these were documented in Chinese sources, there is no similar posi-
tive literary or other documentary evidence known from Indian sources that
specifies clearly the arrival of any Chinese mathematical material in India.45

4 I-Hsing (683–727 C.E.): The Great Chinese
Astronomer–Mathematician

By the end of the seventh century c.e., much Indian mathematics and math-
ematical astronomy was known in China. The compilation of Chiu Chih Li in
Chinese by Gautama Siddha from Sanskrit sources represents the culmination
of such transmissions in 718 c.e. Through this work, Indian methods of com-
putation based on the decimal place-value system (with a zero symbol) and
Indian trigonometry (based on sines) were formally introduced in China. The
analysis of the contents of Chiu Chih Li by Yabuuti (ref. 22 at the end) shows
that mathematical astronomy as found in Sūryasidhānta and in the works
of Varah.mihira (sixth century c.e.) and Brahmagupta (seventh century) was
known in China at the beginning of the eighth century.

At this time I-Hsing appeared on the Chinese scene. He was an able
mathematician, deeply learned in astronomy, and was well-versed in Sanskrit
(Mikami, ref. 28, p. 60). He combined in himself the traditions of Chinese and
Indian mathematical sciences. He became a Buddhist monk, attended con-
vocations of monks and śraman. as, and traveled widely to acquire knowledge
(Needham, ref. 17, p. 38).
45 There are similarities in many other mathematical works that we have not dis-

cussed here. Some of these are treated by B. Datta in his paper “On the Supposed
Indebtedness of Brahmagupta to Chiu Chang Suan Shu,” Bulletin of the Calcutta
Math. Soc., Vol. XXII, pp. 39–51 (1930). Datta does not mention Bhāskara I. Also
see van der Waerden (ref. 23), pp. 196–208, for π = 3.1416, and L.C. Jain, “Jaina
School of Mathematics (A Study in Chinese Influences and Transmissions),” in
Contribution of Jainism to Indian Culture (ed. by R.C. Dwivedi), Delhi, India,
206–220 (1975).
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I-Hsing won a great reputation for his combinatorial calculations. Due
to his Buddhist training, he could easily handle large numbers such as 3361

or 10172. His methods were capable of enumerating all possible changes and
transformations occurring on a go or chess board (Needham, ibid., p. 139).
He could also handle indeterminate problems involving large numbers (ibid.
pp. 119–120). In India, similar problems had already been solved by Bhāskara
I (early seventh century). Some scholars have confused him with I-Hsing, the
pilgrim.46

Between 721 and 727 c.e., I-Hsing prepared, by imperial order, a calendar
known as Ta Yen Li (Needham, ref. 17, p. 37), in which he applied higher
mathematics. Out of the 23 different systems of calendars known by that time,
I-Hsing’s was found to be accurate and has stood the test of time (Mikami,
ref. 28, p. 60).

Gautama Chuan (of the Kumāra clan) probably knew that one of his
Indian collegues had taught I-Hsing the method (say as given in the Sūrya-
Siddhānta) for relating gnomon shadows and solar zenith distance (or altitude)
by means of Chiu Chih Li’s sine table.47 I-Hsing fully used this knowledge.

Greatly influenced by Indian astronomy, I-Hsing made measurements in
ecliptic coordinates, which had previously played a minor role (Needham, ref.
17, p. 202). He was associated in training officials and observers for the great
meridian survey of 724 c.e.48 The observed data were also analyzed by him.
He developed a tangent table that is the earliest of its kind in the world. This
development was based on Indian information about the use and values of
sines, from which his tangent table was derived.49 He used methods of finite
differences, fitting of polynomials, and interpolation.50

46 Shukla (ref. 26), p. 311.
47 Cullen, C.: “An Eighth Century Chinese Table of Tangents,” Chinese Science,

No. 5, 1–33, p. 32 (1982).
48 Beer, A., et al.: An Eighth Century Meridian Line: I-Hsing’s Chain of Gnomons.

Vistas in Astronomy, Vol. 4, 3–28, p. 14 (1961).
49 Cullen (ref. 47), p. 32.
50 See Cullen’s paper (ref. 47) and Historia Mathematica, Vol. 11, pp. 45–46 (1984),

where it is stated that Liu Ch′uo (about 600 c.e.) knew the formula for interpola-
tion for equal intervals and Li Ch′un-feng (665 c.e.) had studied finite differences
up to the second order, and interpolation for equal as well as for unequal intervals.
See R. C. Gupta.: Second Order Interpolation in Indian Mathematics, etc. Indian
J. Hist. Sci., IV, 86–98 (1969).
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1 The Impact of Indian Trigonometry on Mathematics
in Ancient China

It is an important event in the history of Chinese mathematics that Indian
trigonometry was introduced into China together with the Chiuchi calendar
translated by Gautama Siddha in 718 c.e.3 A question arises, then, as to how
Chinese mathematics was influenced by Indian trigonometry. Although the
Chiuchi calendar introduced Indian trigonometry and Western mathematical
astronomy to traditional Chinese mathematics, it cannot be treated as part
of ancient Chinese mathematics, since neither the Chinese mathematicians
at that time nor their successors adopted the algorithms contained in their
work. It is to be mentioned here that this paper discusses only the impact
of Indian trigonometry, focusing on the impact of the related calculation of
R sin θ based on the sexagesimal measure of an angle, though it is known that
Chinese astronomy was influenced by Indian astronomy.4
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Hist. Math.) Vol. 20(4), pp. 110–112 (1998).
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1.1 The Impact of the Basic Concept and R sin θ

1.1.1 The Basic Concept

There are few signs of influence on Chinese mathematical astronomy by Indian
concepts such as angle based on sexagesimal measure. In Chinese calendars the
circumference was divided into 365 1

4

◦
, and the sun traveled 1◦ per day. This

method of division adopted by Chinese calendar-makers was never changed
due to its effectiveness. Moreover, the calendars depended on the relationship
between angle and degree, for example, 1◦ = 100′ in Dayanli, 1◦ = 17′ in
Qianxiangli, and 1◦ = 10′ in Lindeli, etc.5 The calculation of eclipses also
did not use the concept of angle, which led to the determination of an eclipse
according to the phase angles of the planets. There did appear traces of angle–
degree in the Dayanli and Futianli, but that was only for the convenience of
the difference calculation. As for the table of the course of the sun (0−182◦), it
indeed belongs to the Chinese tradition of mathematics, in which one quadrant
amounts to 91◦ and 1◦ = 100′. It shows to a certain extent that Chinese
scholars had never adopted the concepts of degree, minute, phase, etc. and
the relations of their conversion in Indian trigonometry.

1.1.2 The Table of R sin θ

The table of R sin θ in the Chiuchi [1] calendar was applied to determine
interval quantities.6 Since 3438 · sin(λ − Ω), and the interval quantities of
the moon can then be determined, which amounts to the “departure from the
ecliptic of the moon” in Chinese mathematical astronomy:

3438 sinβ =
4 · 3438 sin(λ − Ω)

(40341/Δλ)
.

In which we mark β, Ω, and λ as celestial latitude of the moon, longitude of
ascending node of the moon and celestial longitude of the moon, respectively
(for example, the actual movement of the moon per day). In the Dayanli
and Lindeli, the solar course and the lunar departure were calculated first by
consulting the tables of solar course and lunar departure, and then by means
of secondary interpolation.7 Moreover, one can see 1◦ = 10′ in Lindeli and
1◦ = 120′ in Dayanli. All those are apparently different from the Chiuchi
calendar.
5 Zhi-Gang, Ji: The Creative Change in the Calendar of the Sui and Tang Dynas-

ties. Studies of Mathematical Astronomy in Ancient China, Xian: Northwestern
University Press, p. 19 (1994).

6 Gupta, R. C.: Early Indians on Second Order Sine Differences. Indian Journal of
History of Science. Vol. 7, No. 2, pp. 81–86 (1972).

7 Rong-Bin, Wang: The Principle of Designing for the Method of Interpolation in
the Chinese Ancient Calendar. Studies of Mathematical Astronomy in Ancient
China, Northwestern University Press, Xian, p. 198 (1994).
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1.2 Yi Xing and the Table of Tangents in Dayanli

1.2.1 A Short Biography of Yi Xing

Yi Xing, originally named Zhang Sui (683–727), was born in Changle, Henan
province. He was a child prodigy and proved highly intelligent while growing
up. To avoid Empress Wu Zetian’s nephew, Wu Sansi, Yi Xing became a monk
and lived in seclusion on Son Mountain. He acknowledged the Zenmaster Pu
Ji as his teacher of Buddhism. He later moved to Tiantai, Zhejiang province,
and rejected several appointments from the royal court. In 717, Yi Xing was
eventually forced into service at the court by order of Emperor Tang Xuan-
zong, and he was given responsibility for calendar reform in 721. The new
calendar was completed in 727, the year of Yi Xing’s death. It was said that
Yi Xing studied Vedic literature while living as a hermit in Dangyang, Hubei
province.8

Yi Xing’s Dayanli was a great contribution to traditional Chinese science,
and his work can be considered a milestone in astronomy of medieval China.
Having made extensive observations and difficult measurements for several
years, Yi Xing obtained the necessary data for the new calendar, at the same
time he carefully investigating earlier calendars. He paid great attention to
the Huangjili, which was most probably the chief source of the Dayanli.

1.2.2 The Case of Dayan Plagiarizing Chiuchi

Early in the Tang Dynasty, there were debates about whether Dayanli [2]
had plagiarized Chiuchi.9 According to the New History of Tang, Annals of
Calendar III, “Mathematician Qutan Zhuan was unhappy about not being
able to participate in calendar making, and therefore presented together with
Chen Xuanjing a memorial to the Emperor in 733 criticizing Dayanli, saying
that it had plagiarized the Chiuchi calendar, but the methods were not com-
plete.” Dayanli was also reproached by the master of Prince Nangong Yue.
The Emperor therefore asked the shiyushi (supervisor royal) Li Lin and the
taishiling (astronomer royal) Heng to make a comparison by using the records
of eclipses at the observatory. The result was that the degree of accuracy in
predicting eclipses was 70–80% for the Dayanli, 20–30% for Lindeli, and 10–
20% only for the Chiuchi calendar. Therefore the objections to Dayanli were
rejected by the emperor, and Nangong Yue and the others were convicted.

In fact, one could hardly find a paragraph in Dayanli that was directly
taken from the Chiuchi calendar. At that time, the accuracy of a calendar was

8 Se, Ang Tain: A Biography of Yi Xing (683–727 c.e.). Kertas-Kertas Penggajian
Jionghua Papers on Chinese Studies, Vol. III, Jabatan Penggajian Jionghua
Unversity, Malaya, pp. 31–58 (1989).

9 Jiu-Jin, Chen: The Collection of Chen Jiu-Jin. Heilongjang Education Press,
Harbin, pp. 371–372 (1993).
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mainly checked from records of eclipses. Dayan was a new calendar, while the
data in Chiuchi were at least partially out of date. It is therefore not surprising
that Chiuchi would lose in the controversy over accuracy. However, it was not
totally baseless for Chen and Nangong to support Zhuan in accusing Yi Xing
of “incompleteness” in using Chiuchi ’s methods in his Dayanli.

(a) The method of Ri Yue Shi Jin (apparent radius of the Sun and Moon) and the
Di Ying Ban Jing (radius of the Earth’s shadow) for determining eclipses had
its origin in Chiuchi. Dayanli mentioned it in remarks, but did not use it in the
calendar itself. This is “incomplete.”

(b) Having adopted the concept of Jiu Fu Shi Cha (eclipse differences of nine places)
in Chiuchi, Dayanli used less-convenient interpolation method instead of the
trigonometric approach. This is “incomplete.”

(c) To correct the unreasonable jump data of the excess and deficiency of the moon’s
daily path in Huangjili, Dayanli reduced the minute value of excess and defi-
ciency 2.77◦–2.42◦, which was still less accurate than the value 2 degrees 14min
in Chiuchi.

(d) The nine-road method of daily path to determine the moving period of the
intersection point of the ecliptic and the Moon’s path in Dayanli had a source
in Chiuchi, the Axiu method, but it is not as accurate as the latter.

It is significant that Yi Xing adopted some of the strong points in Chiuchi,
but unfortunately he was critical of Chiuchi on the whole. That caused the
controversy that led Chen, Nangong, and Zhuan to be convicted. Zhuan was
reappointed at the royal observatory only 25 years later. Eventually Chiuchi
was forgotten. As a result of the case of the so-called plagiarizing of Chiuchi,
it was often concluded that Chinese mathematics was influenced by Indian
trigonometry. However, such was not the case: Dayanli had not used Indian
trigonometry.

1.2.3 Yi Xing’s Table of Tangents

Indian trigonometry was transmitted to China in the Tang Dynasty, and
Yi Xing knew the Chiuchi. Moreover, in Dayanli there appeared a table of
tangents. One may therefore draw the conclusion that the table of tangents
was influenced by Indian trigonometry. However, that was actually not the
case. Let us have a look at how Yi Xing calculated his table of tangents. Yi
Xing’s method was recorded in the New History of the Tang Dynasty:

There would be no gnomon (shadow) right under the sun (Dairi). To
one degree north, the length of the gnomon shadow is 1379. Take this
as the initial difference, which will increase by 1 for every degree up to
25◦, the last increment is 26; it will increase by 2 for every degree up
to 40◦, the last increment is 56; it will increase by 3 for every degree
up to 44◦, the last increment is 68; it will increase by 5 for every
degree up to 50◦, . . . it will increase by 19 for every degree up to 60◦,
the last increment is 160; . . . it will increase 39 for every degree up
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to 72◦, the last increment is 260; . . . Take the Ducha (i.e., difference
for every degree), sum up all the differences, and add the sum to the
initial difference, you will get the Guicha (i.e., difference of the length
of the gnomon shadow) at the given degree; sum all the Guicha up,
you will get the Guishu (i.e., the length of the gnomon shadow) at the
given degree.

According to the above paragraph, quoted from the New History of the
Tang Dynasty, Liu Jinyi and C. Cullen gave tables, among which Cullen’s
table seems not to agree with the original source in its treatment of degree
increments.10 The following is a table based on Liu’s table by checking against
the source from the The Ancient History of the Tang Dynasty:11 Liu’s table,
though it has been collated, is not yet completely consistent with the original
text (Table 1).

Table 1. The part of Richan (the course of the sun) table

North Guishu Guicha Diff. Adding North Guishu Guicha Diff. Adding
to (L) of rate to (L) of rate

Dairi degree Dairi degree
(X◦) (X◦)

0 0 1379 1 1 21 3.0499 1610 22 1

1 0.1379 1380 2 1 22 3.2109 1632 23 1

2 0.2759 1782 3 1 23 3.3741 1655 24 1

3 0.4141 1385 4 1 24 3.5396 1679 25 1

4 0.5526 1389 5 1 25 3.7075 1704 26 2

5 0.6915 1394 6 1 26 3.8771 1730 28 2

6 0.8309 1400 7 1 27 4.0509 1758 30 2

7 0.9709 1407 8 1 28 4.2267 1788 32 2

8 1.1116 1415 9 1 29 4.4055 1820 34 2

9 1.2531 1424 10 1 30 4.5875 1854 36 2

10 1.3955 1434 11 1 31 4.7729 1890 38 2

11 1.5389 1445 12 1 32 4.9691 1928 40 2

12 1.6834 1457 13 1 33 5.1547 1968 42 2

13 1.8291 1470 14 1 34 5.3515 2010 44 2

14 1.9761 1484 15 1 35 5.5525 2054 46 2

15 2.1245 1499 16 1 36 5.7591 2100 48 2

16 2.2744 1515 17 1 37 5.9679 2148 50 2

17 2.4259 1532 18 1 38 6.1827 2198 52 2

18 2.5791 1550 19 1 39 6.4025 2250 54 2

19 2.7341 1569 20 1 40 6.6275 2304 56 2

20 2.8910 1589 21 1 41 6.8579 2360 59 3

10 Cullen, Christopher: An Eighth Century Chinese Table of Tangets. Chinese
Science, 192, Vol. 5, p. 1.

11 Xu, Liu: The Ancient History of the Tang Dynasty. VI (Vol. 34) Zhonghua Shuju,
Beijing, p. 1254.
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There are two differences between Cullen’s and Liu’s tables. First, Liu’s
table, having been collated, is able to explain the whole of Yi Xing’s method
in the New History of the Tang Dynasty except the phrase “up to 72◦, the
last increment is 260,” while Cullen did not make the necessary collation,
but gave the values of the increments at the interval points. Secondly, they
differ from each other in the treatment of the increments from one interval to
another. A problem is how to understand “increase 1 for every degree up till
25◦,” i.e., what is the increment from 25 to 26◦? Taking 1 as the increment at
25◦, “the last increment is 26” will be explainable. It seems to the author that
Cullen’s explanation is unreasonable at this point. Moreover, it is known from
the The Ancient History of the Tang Dynasty that for the interval 1◦−45◦ the
last increment is 68′. There followed three intervals after that: 45◦−61◦−160◦.
The Ancient History of the Tang Dynasty added the phrase “up to 25◦, the
last increment is 26,” implying that one should take the increment at 25◦ as
previously. Thus the whole method will be fully understandable only if we
revise the sentence “up to 72◦, the last increment is 260′′ by the substitution
of “423” for the figure “260.”

The author supports Liu’s approach for making the table. According to
Cullen, Yi Xing’s table was affected by the Indian table of R sin θ and was
obtained by the following calculating steps:

(a) Finding the values of sine for each degree by the table of R sin θ (using
the first interpolation)

(b) Finding the values of 3484 · R sin(90◦ − x) for each degree by a similar
method

(c) Producing the table of tangents by use of the formula

8
3484 sinx

3484 R sin(90◦ − x)
.

Unfortunately, there is no evidence to show that Yi Xing made the trans-
formation of the angle systems between 360◦ and 365 1

4

◦. It is also unbelievable
that a Chinese scholar in the eighth century would know the relation

tan a =
sin a

cos a
.

Moreover, by Cullen’s calculating process, the result for the initial difference
would be 1378, not 1379. All these things show that it seems impossible for
Yi Xing to have calculated his table by means of Cullen’s process, and the in-
ference made by Cullen is groundless. As a matter of fact, it is more likely that
Yi Xing calculated his table of tangents by means of the table of differences
for the purpose of working out the length of the gnomon shadow for the given
places. In practical measurement, the angle of the sun at the northernmost
city in ancient China, Tiele, to the pole at the winter solstice is 76◦, therefore
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Yi Xing reasonably stopped the calculation of his table at 80◦. It looks at first
as if the figures for the last column appear quite irregularly, but one would
find a very regular table of differences if one carried the calculation up to the
second and third differences.

Table Extract

Adding rate 1st-Difference Higher differences
440

620
1060 180

800 0
1860 180 0

980 0 0
2840 180 0

1160 0
4000 180

1240
5340

It is no coincidence, but in fact, there is strong evidence to show that Yi Xing
constructed his table of tangents by means of higher differences.

1.3 The Influence of Futianli

The author of Futianli was Cao Shikui, who lived in the middle Tang. Cao
Shikui’s method for determining the actual distance in degrees traveled by
the sun was recorded in a book titled Futianjing Richanbiao Licheng which
was not known until the 1960s.12,13

In modern symbols, denoting the actual longitude of the sun by λ, the
perigee angle by θ, the average perigee angle by l, the length of a tropic year
by T , and eccentricity by e, Cao Shikui’s method described in the Licheng
amounts to:

λ − l = 2e sin θ,

f(l) =
1

3300
(182 − l) (0 ≤ l ≤ 91),

and f(l) satisfies the following relations:

(a) f(T + l) = f(l)

12 Yu-xing, Tao: Futianli (the study of), Study of History of Science, Yanbo Press,
Japan, No. 71, pp. 118–120 (1964).

13 Mao, Zhongshan: The Position of Futianli in the History of Astronomy. Study of
History of Science, Yanbo Press, Japan, No. 71, pp. 120–122 (1964).
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(b) f(T
2 + l) = − f(l)

(c) f(T
4 + l) = f(T

2 − l).

By the definition of f(l) it follows that f(l) ⇔ A sin l.
We do not know even now how Cao Shikui’s method was constructed. At

any rate, the formula for the central differences created by Futianli was further
developed by the astronomer Bian Gang at the end of the Tang. The formula
was of the form f(x)= ax(b−x), and was therefore called the “method of sub-
traction and multiplication.” Cao Shikui used a single interpolation polyno-
mial instead of the traditional calendar tables and the corresponding interpo-
lations for different intervals. Cao was a pioneer in China who opened the way
to formulizing calendar tables and their algorithms. Futianli ’s other contribu-
tion was that for the first time it gave up the long and complicated tradition
of calculating the Shang Yuan Ji Nian (grand beginning) for calendar-making
in China, and took the Yushui (rain water, the first of the 24 solar terms)
as Li Yuan (beginning of the calendar), another important attempt to reform
calendar-making after the Yuanjiali (443).

A significant fact regarding Futianli is that it differed from all the previous
Chinese calendars in relation to the Indian calendars. In fact, the Futianli bore
some analogy with Indian calendars. For instance, it used Luohou and Jidu to
calculate eclipses, which were apparently influenced by Indian astronomy. In
addition, the Licheng’s table listed the differences of the course of the sun in
solar terms by degree, which also was similar to Indian calendars. Therefore
Wang Yinglin, of the Song Dynasty, said in his Kunxue Jiwen (Vol. 9) that
the Futianli had its origin in the Indian calendar.

In short, there is considerable content in the Futianli that showed the
influence of Indian calendars. Nevertheless, the Futianli did not adopt the
Indian carry system: 1◦ = 60

′
and 1 Zhou (cycle) = 360◦.

2 Conclusions and Some Remarks

2.1 A Comparison Between Calendar Systems

By comparing ancient calendar systems of China and the West, one may see
that from the Huangjili onwards that the Chinese had noticed the variability
of the velocity of the visual movement of the sun and had worked out tables
of the course of the sun. Chinese scholars formed a calendar system that was
based on observational data and used interpolation as the main approach to
calculation. In the time of Yi Xing, the interpolation approach became more
sophisticated, and Yi Xing and others built up more systematic algorithms
that they applied in constructing calendars. In the middle Tang, Cao Shikui
made further progress to formulize calendar tables and their algorithms, which
had great impact on calendar-making thereafter. It would have been difficult
for Chinese scholars to give up such a long tradition of a sophisticated and
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effective algorithm system. The different angle systems represent an example
of such a difficulty. Cao Shikui adopted considerable Indian calendrical knowl-
edge in his Futianli, but, still, he transformed it into a form adapted to the
Chinese angle system (1 Zhou = 365 1

4

◦).

2.2 Equivalence of the Chinese Gou–Gu Method and Indian
Trigonometry

Indian trigonometry is revealed in Indian astronomy and calendars, in par-
ticular as an application to the astronomical and calendrical calculations of
elements of trigonometry with the correct concept of the angle and a ra-
tional carry system of all Indian trigonometric knowledge, only the table of
R sin θ was transmitted to China. Since in practical calculations, R sin θ rep-
resents one side of a right triangle, it can therefore be seen as equivalent to
the so-called Gou–Gu method : a calculational approach using the Pythagorian
theorem, which Chinese mathematicians and astronomers had mastered. How-
ever, Chinese scholars continued to use the Gou–Gu method in making cal-
endars and astronomical calculations, but they did not link the side values
of a right triangle with its angles, which prevented them from accepting true
trigonometry.

2.3 Conclusion for Exchanges

Both Chinese mathematics and Indian mathematics belong to the oriental tra-
dition, which has a common inclination to pay major attention to calculations.
On the other hand, of course, each of them kept its own characteristics.
Indian trigonometry was a product of the improvement and re-creation of
Greek astronomy. This led India to be a country where trigonometry devel-
oped, and, in particular, the origin and application of the table of R sin θ,
which symbolized to a certain extent the appearance of trigonometry. In con-
trast, Chinese mathematicians and astronomers did not give up their own
system, and did not take advantage of trigonometry in their exchanges with
their Indian colleagues. Yi Xing used interpolation but not trigonometry in
his calendrical calculations. Even Cao Shikui, who went further in study-
ing Indian trigonometry, still transformed the 360◦ system to the 365 1

4

◦

system.
For a long time, Chinese scholars accepted foreign culture only under

the paradigm of Jiu Zhang (Nine Chapters on the Mathematical Art), and
were often reluctant to accept new ideas of mathematics from other coun-
tries and areas. That is, of course, inevitable to some extent. If there had
been no complete calendar system in China at that time, and if it had
been the Chiuchi, not the Dayanli in of which the accuracy for predicting
eclipses was 70–80%, then trigonometry would have appeared and developed in
China.
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1 André Weil

After the death of André Weil, one of the leading mathematicians of the
twentieth century, in 1998, six articles appeared on his life and work in the
Notices of the American Mathematical Society in 1999. These were written by
some of his close associates, vividly picturing his charismatic personality and
the extraordinary breadth and exceptional depth in the mathematics that he
created.

H. Cartan, one of his great friends and collaborators of Bourbaki
wrote, “His contributions to enriching the heritage of mankind are
enormous.”

However, one of the most interesting cornerstones of Weil’s multifaceted life
and splendid deeds is scarcely mentioned. This was that he embarked on his
professional career at Aligarh Muslim University, India, when he was just
a young man of 23, almost immediately after finishing his D.Sc. from the
University of Paris. How it all happened makes an incredibly fascinating
story. In fact, Weil was associated from his school days with Sylvain Levy,
the f amous French linguist occupying the “Indian Chair” at the Collège de
France. Levy aroused in him an immense interest in Indian culture and civi-
lization by suggesting a supplementary study of Sanskrit and great works like
the Bhagavadgītā, Mahābhārata, and Meghadūta. Noting his unabated interest
in going to India, Levy was ultimately instrumental in Weil’s appointment as
professor and head of the Department of Mathematics of Aligarh Muslim
University in 1930.

∗ B. S. Yadav, formerly professor and head of the Department of Mathematics
and dean of the Faculty of Mathematical Sciences at the University of Delhi, is
presently editor of Gan. ita Bhārti, the Bulletin of the Indian Society for History
of Mathematics. His areas of interest are Functional Analysis, Operator Theory,
Fourier Analysis, and History of Mathematics.
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The period of Weil’s stay in India, a little more than two years, left such
an indelible mark on his intellectual upbringing that the whole philosophy of
his life and mathematical research could be viewed as a manifestation of the
ramifications of this period; see Yadav [10]. He himself says that he had a
“second birth” (dvija) at the end of this period. There is nothing surprising
that out of the six chapters of his autobiography, Apprenticeship of a Math-
ematician [8], he devotes one full Chapter entitled “India,” to this period.
Weil’s autobiography, provides several glimpses into different phases of his
life in which his Indian background (of just two years) was decisive in crucial
decisions and sustained him in trying situations, troubles, and tribulations.
For example, when the Second World War broke out, he was supposed to
join the army as a reserve officer, but he decided to refuse service and fled to
Finland. He says that he was justified in his decision because his paramount
duty at that time was to continue serving mathematics rather than the army.
He felt had been strongly that the Second World War had been forced on
France and therefore it was not his country’s war. Moreover, mathematics
had already suffered in his country because of the First World War, and not
many mathematicians were left. Thus he felt morally determined to perform
his duty to continue serving mathematics as best he could.

In fact, he came to this crucial decision because of his firm belief in Indian
mythology and thought. He was inspired by the world-famous gospel of the
Bhagavadgītā (Chap. 2, ślokā 47):

karman. yevādhikāraste mā phaleśu kadācana

(To perform your duty only is your right but never on its fruit.)

Another justification that Weil gives for his decision is based on Gandhi’s
concept of the “Satyāgraha” (civil disobedience), which he successfully used
in the freedom fight against British rule in India. In fact, Gandhi felt that
it is one’s duty to disobey laws whenever one is convinced that they are
fundamentally unjust, regardless of the consequences. Weil felt that it was his
duty to devote himself to mathematics and it would have been a sin to let
himself be diverted from it.

One of the best parts of Weil’s autobiography relates to his poetic
description of his courage against the sufferings of the solitude of his prison
cell at Rouen, where he was imprisoned after his return from Finland. His
contact with Indian thought again helped to sustain him, and he appears as
the metamorphosed “Yaks.a” of the Rouen prison. Yaks.a is the main char-
acter in Meghadūta, one of the finest poems in Sanskrit by the Indian poet
Kalidāsa, who is universally recognized as one of the greatest poets the world
has ever produced. Weil had studied Meghadūta so deeply that he could recite
some of its verses from memory. He wrote heartbreaking letters to his wife,
Eveline, describing his life and mental state in the solitude of the prison cell,
so touching, so deep in introspection, and so emotionally charged.

Whenever he was not doing mathematics in the prison cell, he read
the Chandogya Upanishada and Bhagavadgītā, which he always kept by his
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side. André Weil’s fundamental work penetrates into at least nineteen areas
of pure and applied mathematics recognized by the International Union of
Mathematics, including algebraic geometry, algebraic topology, analysis, Lie
groups and Lie algebras, differential equations, number theory, and history of
mathe matics.

Some of the landmarks that he established in his creative research are:

• The proof of Riemann hypothesis for smooth projective curves over a finite
field.

• The construction of the compactification in the theory of almost periodic
functions.

• The development of harmonic analysis on locally compact groups.
• A Cauchy integral formula in several complex variables that anticipates

the Silov boundary (this was established when he was at Aligarh).
• Weil’s conjectures for the number of points on a nonsingular projective

variety.
• The fundamental Mordell–Weil theorem for elliptic curves.
• The introduction of the Weil group in class field theory and that of fiber

bundles in algebraic geometry.
• The use of holomorphic fiber bundles in several complex variables.

See his collected papers [9].
To quote Jean-Pierre Serre from his address to the Academie des Sciences

de Paris in March 1999, dedicated to the memory of André Weil,

What makes his work unique in the twentieth century is the prophetic
aspect (Weil sees into the future) combined with the most classic
precision. Reading and studying his work and discussing it with him
have been my greatest joy as a mathematician.

2 His Book Number Theory

André Weil wrote more than twenty books, ranging from textbooks to research
monographs and sets of unpublished lecture notes. However, we are concerned
here with his book Number Theory: An Approach Through History [7].

This is an unusual book by an unusual author, in the sense that it does
not simply deal with certain topics in number theory or works of some
authors, giving the proper context and references and possibly highlighting
their importance and standing in the overall area of investigation. It essentially
studies four masters who are known as the founders of the modern number
theory: Fermat, Euler, Lagrange, and Legendre, but while doing so it actually
describes in detail the salient features of the subject, covering 36 centuries
starting from 1900 b.c.e. [5]. The book serves as a sound testament to Weil’s
abiding interest in the history of mathematics. It shows that Weil was en-
dowed with the knack of efficiently combining a variety of ideas in different
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directions. He presents the subject in such a fashion that it appears as if he
himself were studying the subject along with the masters. In his own words:

Our main task will be to take the reader, so far as practicable, into
the workshop of authors, watch them at work, share their successes
and perceive their failures.

We take an example from his book in which he highlights a result of Lagrange
and invokes the work done by ancient Indian mathematicians in its historical
context.

3 The Square-Nature (Varga-Prakrti)

We consider the Diophantine equation

Ny2 + 1 = x2, (1)

where N > 1, and seek its integer solutions (x, y). We assume without any
loss of generality that N is free from square factors. This is known in ancient
Indian mathematics as ‘Square-Nature’ (Varga-Prakrti), see [4], and is well
known as “Pell’s equation” in general mathematical literature after the British
mathematician, John Pell. There is nothing on record that he worked on
the equation, but he did have correspondence with Euler (1707–1783) on the
subject. No one knows the exact origin of the equation, but it is known to be
associated with the algebraic formulation of a problem posed by Archimedes
(287–212 b.c.e.) to the Alexandrians [2]. André Weil devotes Chap. IX of his
book to a discussion of Pell’s equation (1), giving a brief history of the problem
and refering to the works of Colebrooke [3] and Datta and Singh [4]. True
to his spirit of “watch them at work,” he explains Brahmagupta’s method of
solving the equation, showing that if the equation (1) has a nontrivial solution
(other than the trivial one (1, 0)), then it has infinitely many solutions. Datta
and Singh devote 41 pages of their book to Square-Nature. However, over
and above what is given in Colebrooke [3], Datta and Singh [4], and Weil [7],
we shall show how Brahmagupta’s result can be proved by an elegant use of
elementary group theory; see Chahal [2].

We observe first that if (x, y) is a solution of (1), then so also are (±x,±y).
Thus, in what follows, we shall assume that x, y ≥ 0.

Brahmagupta’s Theorem. If (1) has a nontrivial solution, then it has
infinitely many solutions.

Proof. We shall follow Chahal [2]. Let us consider the set G of all solutions
(x, y) of (1). Then G is nonempty; Since (1, 0) ∈ G. It was Brahmagupta who
defined for the first time a binary composition ∗ on G by

(x, y) ∗ (x′, y′) = (xx′ + Nyy′, xy′ + x′y). (2)
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See Weil [7, p. 21]. We see that ∗ is associative and has (1, 0) as an identity.
Moreover, for each (1, 0) ∈ G, (x,−y) serves as its inverse (x, y)−1. Thus G is
a group. Now suppose that (x1, y1) ∈ G, where x1, y1 ≥ 1. For each positive
integer n, we put (xn, yn) = (x1, y1)n, then (xn, yn) ∈ G. Since N, x1, y1 ≥ 1,
we see from the binary composition (2) that

y1 < y2 < y3 < · · · ,

and hence G is infinite. Thus (1) has infinitely many solutions.

Though Brahmagupta’s definition of binary composition was of genuine
ingenuity, his result did not produce any nontrivial solution of (1). It is
interesting to observe that such situations have arisen elsewhere in the history
of mathematics. For example, his argument can be fairly compared with that
of G. Cantor: After showing that the set of all real numbers is uncountable
and that the set of all algebraic numbers is countable, Cantor concluded that
the set of all real transcendental numbers is infinite (in fact, uncountable).
Mathematicians initially rejected Cantor’s argument, since it did not show
the existence of even a single transcendental number. Brahmagupta’s work
was rediscovered by Euler in 1764 and recognized as important by Lagrange
in 1768.

It was left to the genius of Bhāskarācarya II (1114–1185) and his less-well-
known contemporary Jayadeva [6] to solve the equation completely for some
particular values of N = 61, 67, 83, 92, etc. The task was, in fact, very difficult
for such numerical solutions and, as such, was no mean achievement.

It was Lagrange (1736–1813), however, who first showed the existence of
a nontrivial solution of the Square-Nature. We say that a (general) group G
is cyclic if there exists an element g ∈ G such that

G = {gn : n ∈ Z},
and g, in that case, is called a generator of G. Finally, it was Dirichlet who
proved that the set G of all solutions of the Square-Nature forms an infinite
cyclic group. Studies concerning the Square-Nature in its own right and with
applications in various mathematical sciences cover a wide spectrum and have
acquired great significance in mathematics. See Chahal [2].

Before we close, I would like to highlight yet another important aspect of
Brahmagupta’s attempt which has hardly been emphasized earlier. A little
digression will perhaps provide a better context.

If we trace back the history of structuralism in the Western world, it
originated in literature when the Russian linguist Roman Jacobson started
using the term ‘structure’ for the first time in his works in 1929. However,
the credit for its mathematical incarnation goes to Bourbaki, who aimed at
building the whole edifice of mathematics to base on the theory of sets. Three
binding principles were the axiomatic method, the study of structures, and the
unity of mathematics. Bourbaki’s structuralism movement was not confined
to mathematics alone, but started having ramifications in diverse disciplines
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like anthropology, philosophy, psychology, economics, and even linguistics. A
society called ‘Oulipo’ was even founded in order to deconstruct and rebuild
literature using Bourbaki’s mathematical structuralism. The structuralism
reigned all through the middle of the twentieth century c.e.

All that we have seen above was initiated by Brahmagupta in the seventh
century c.e. (see Chap. 12 for his life and work) in order to solve the Square-
Nature. A particular case of the problem was raised by no less a sovereign
mind than Archimedes’ in the third century c.e. The most important step
in the whole development was his definition of the binary composition on
the set of all solutions of the Square-Nature. The concept of ‘binary compo-
sition’ is all prevailing and omnipresent in mathematical structuralism and
its applications, as it serves as a thread intertwining any kind of mathemati-
cal structure. Brahmagupta combined two solutions of the Square-Nature to
give another, that is, defined a binary composition on the set of solutions
of the Square-Nature, an achievement of genuine ingenuity with far-reaching
consequences.

Regarding André Weil, the unquestioned leader of Bourbaki’s mathemat-
ical structuralism, his researches led to the formulation of sweeping general-
izations about zeta functions of general algebraic varieties over finite fields,
interpreting the Riemann hypothesis in the new context. He even proved the
Riemann hypothesis for smooth projective curves over a finite field, a work
which he himself would say it had engaged him most all through his research
activities. P. Deligne obtained the proof of the corresponding Riemann hy-
pothesis for zeta functions of arbitrary varieties over finite fields.

If a history of twentieth-century mathematics is written, the work of Weil
and Deligne on the Riemann hypothesis must easily be reckoned as one of
the top-ranking achievements in mathematical research. Its numerous appli-
cations to the solution of long-standing problems in number theory, algebraic
geometry, and discrete mathematics are witness to the significance of these
general Riemann hypotheses; see Bombieri [1].
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On the Application of Areas in the Śulbasūtras
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1 The Śulbasūtras

The earliest known texts from ancient India that deal directly with mathe-
matics are the Śulbasūtras. The Sanskrit word śulba (sometimes written śulva)
means a rope or a cord, and these texts thus contain the rules of the cord,
the knowledge necessary for measuring the arenas and altars used in ancient
Indian rituals. Generally dated to the period between 800 and 200 b.c.e., the
Śulbasūtras are important documents giving information about mathematical
knowledge at an early stage in Indian history.

There are a number of Śulbasūtra texts, the main ones being the Baudhā-
yana-śulbasūtra, the Āpastamba-śulbasūtra, the Kātyāyana-śulbasūtra, and the
Mānava-śulbasūtra, all of which have been published more than once. In the
following, all references to these texts refer to the edition of Sen and Bag cited
in the bibliography.

2 Mathematics in the Śulbasūtras

The mathematical propositions and methods delineated in the Śulbasūtras are
aimed at practical applications. Although passages such as Āpastamba-śulba-
sūtra 5.7 show that reasoning comparable to what one might call a proof
is employed, proofs, in the Euclidean sense of the term, are not found in
them. The mathematical content of the Śulbasūtras is rich, though, and a
brief overview will be given here.

The Pythagorean theorem is given in a geometrical formulation in both the
Baudhāyana-śulbasūtra (1.9–1.12) and the Āpastamba-śulbasūtra (1.4–1.5).
After the statement of the theorem, the Baudhāyana-śulbasūtra (1.13) gives
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a list of sides of rectangles, all corresponding to Pythagorean triples, to
illustrate the theorem; most of these Pythagorean triples are used in the
Āpastamba-śulbasūtra (5.2–5.6) for measuring out the mahāvedi , a sacrificial
arena, using cords and stakes. Methods for construction of various geometrical
figures, most importantly squares and rectangles, but also isosceles triangles
and rhombi, using cords and stakes are given. It is explained how to construct
a square equal in area to the sum of the areas of two given squares, and,
similarly, how to construct a square with an area equal to the difference of
the areas of two given squares. The construction of a figure equal in area to
a second figure and similar to a third is presented for a number of figures:
transforming a square into a rectangle, a rectangle into a square, and a square
into an isosceles trapezoid, as well as attempts at transforming a square into
a circle (circling the square) and a circle into a square (squaring the circle).
A value of

√
2, namely

√
2 = 1 +

1
3

+
1

3 · 4 +
1

3 · 4 · 34
,

correct to five decimal places, is given. A passage in the Baudhāyana-śulba-
sūtra (4.15) states that a pit of diameter 1 pada (a linear measure) has a
circumference of 3 pada, which implies π = 3, while the methods for cir-
cling the square and squaring the circle imply a value of π of roughly 3.088.
The Mānava-śulbasūtra (11.13) further gives a formula for computing the
circumference, c, of a circle with diameter d, namely c = 16

5 · d, which implies
π = 3.2. The Mānava-śulbasūtra (10.9) gives a formula for computing a
volume by multiplying length, breadth and height.

3 The Agnicayana

In addition to the above, the texts also provide directions for covering various
altars with bricks according to certain rules laid down by the ritual texts.
One of the rituals for which the Śulbasūtras provide such directions is the
agnicayana (literally, “the piling up of the fire-altar”). In the agnicayana, a
fire-altar is erected according to specific rules. It is constructed in five layers
with 200 bricks of equal height in each; the edges of the bricks in one layer are
furthermore not permitted to coincide with the edges of the bricks in the adja-
cent layer or layers, except along the border of the fire-altar, where it cannot be
avoided. The total area of the altar has to be 7 1

2 square purus.a (a linear mea-
sure corresponding to the height of a man with his arms stretched upward),
but its shape can be varied according to the desired outcome of the ritual. An
older ritual text, the Taittir̄ıya-sam. hitā (5.4.11; see [3, Vol. 2, p. 438–439]),
gives a list of shapes and their corresponding outcomes, including the shape
of a falcon for flight to heaven, and an isosceles triangle or a chariot wheel
for the destruction of enemies. The Baudhāyana-śulbasūtra (20–21) contains
one shape that is not mentioned in the Taittir̄ıya-sam. hitā, namely that of a
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Fig. 1. Rectangular falcon

tortoise for winning brahmaloka, the world of the spirit. The practical matters
concerning measuring out these altars and erecting them with bricks is taken
up in the Śulbasūtras.

If a patron desired to perform the agnicayana more than once, the area
of the altar was to be increased by 1 square purus.a at each successive per-
formance. The geometrical problem involved here is to increase the area of a
given figure while preserving its shape. In the Śulbasūtras (Baudhāyana-śulba-
sūtra 5.6 and Āpastamba-śulbasūtra 8.6) this is accomplished in essentially the
following way. The area to be added to the original 7 1

2 square purus.a, say n
square purus.a, is divided into 15 parts. Two such parts are added to a square
purus.a and the side of the resulting square gives a new unit length that is
then used instead of the purus.a to construct the altar according to the rules
given previously.

Of particular interest here is the agnicayana altar shaped like a falcon.
In its simplest form, the falcon-shaped altar is composed of squares and rect-
angles: four squares with side 1 purus.a form the body, two such squares form
the two wings, and a seventh square forms the tail. In addition, the two wings
are extended by 1

5 purus.a, and the tail by 1
10 purus.a. The altar is shown in

Fig. 1. The altar together with instructions for erecting it with bricks in dif-
ferent ways is given in Baudhāyana-śulbasūtra 8–9 and Āpastamba-śulbasūtra
9–11. In the following this particular falcon-shaped altar will be referred to as
the rectangular falcon.

In addition to this form, two falcon-shaped altars that better resemble ac-
tual birds of prey are described in both the Baudhāyana-śulbasūtra (10 and 11)
and the Āpastamba-śulbasūtra (15–17 and 18–20). These falcon-shaped altars,
which will be referred to as realistic falcons in the following, have heads, curved
wings and tail, and, with the exception of the first realistic falcon in the Āpa-
stamba-śulbasūtra, plumage. As an example of one of these, Fig. 2 shows the
second realistic falcon in the Baudhāyana-śulbasūtra.

Pure Mathematical Physics



66 Toke Lindegaard Knudsen

Fig. 2. Realistic falcon

4 Relationship Between the Śulbasūtras
and Older Literature

Seidenberg noted that the Śulbasūtras never claim originality, but merely as-
sert that they follow earlier teachings [9, p. 105]. However, as has been pointed
out by Chattopadhyaya, such assertations always occur in connection with
theological or ritual considerations and not in connection with the practical
aspects of altar construction [11, p. vi–vii]. In other words, when it comes to
the question of what is to be done, the Śulbasūtras will cite an authoritative
ritual text, but when it comes to how it is to be done, no authorities are cited.
In this connection, Pingree’s strong suspicion that “the geometry was not in-
vented to provide the priests with a technical means of meeting their rather
arbitrary rules for the construction of altars, but rather that the rules were
devised to utilize an existing constructive geometry” [7, p. 184] is important.
This raises the important question whether the practical knowledge of the
Śulbasūtras was the property of a class of craftsmen (Chattopadhyaya argues
that the tradition could have ties with the Harappan civilization [11, p. xviii]),
rather than of the priestly class. As has been pointed out by David Pingree,
the origin of the practice of applying geometry to constructing altars as well
as the development of this science within the Indian tradition are topics that
need to be addressed [7, p. 184], but these important issues aside, it can be
shown that much of the mathematics in the Śulbasūtras predates the texts
themselves.

Seidenberg has argued convincingly that some of the mathematical re-
sults and procedures found in the Śulbasūtras, such as the Pythagorean
theorem and the increase of the area of the agnicayana altar while pre-
serving its shape, must have been known in the period of the Śatapatha-
brāhman. a and, in the case of the Pythagorean theorem, perhaps even in
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the period of the Taittir̄ıya-sam. hitā [9, pp. 105–108]. Kulkarni has similarly
explored mathematics as known before the composition of the Śulbasūtras
[5, pp. 9–29].

Considering all this, there can be little doubt that much of the mathemat-
ical knowledge of the Śulbasūtras is not original to them and was known in
previous periods. The Śulbasūtras are, however, the first known texts to codify
this knowledge. Mathematical results and methods, such as the Pythagorean
theorem, and the conversion of a given rectangle into a square of the same
area, are given a general formulation in them, while other results are given in
connection with specific constructions. It is possible that certain procedures,
such as the squaring of the circle or the circling of the square, are original.
In other words, the Śulbasūtras mark the point in Indian history where mathe-
matical knowledge is for the first time presented directly in sections of the
sacred texts. It is in this sense that the Śulbasūtras represent a leap in the
history of ancient Indian mathematics.

5 Application of Areas

Van der Waerden believed that three mathematical propositions, namely the
Pythagorean theorem, the application of areas (i.e., the problems in Euclid’s
Elements VI. 28–29, which are generalizations of II. 5–6 and enable one to
solve quadratic equations geometrically), and the problem of constructing a
figure equal in area to a second figure and similar to a third, were not thrown
together arbitrarily, but were part of a Pythagorean mathematical textbook,
“The Tradition of Pythagoras” [12, pp. 117–118]. Investigating the relation-
ship between Greek and Indian mathematics, Seidenberg pointed out that
while the third problem is the central problem of the Śulbasūtras and the
Pythagorean theorem is necessary for its solution, “there is no clear evidence
in the Śulvasūtras on the application of areas, but it has been suggested that
the Vedic priests could solve quadratic equations, and there are some grounds,
not very solid to be sure, for this opinion” [9, p. 100]. What Seidenberg is refer-
ring to here is Datta’s investigation of the algebraic significance of the Śulba-
sūtra method for enlarging an agnicayana altar, connecting it with quadratic
equations [1, pp. 165–177]. As we saw above, the Śulbasūtra method for en-
larging an altar is indeed ingenious, but as a geometrical procedure it does
not go beyond the rules and methods given in the Śulbasūtras, and there is no
evidence, nor does it seem likely, that the Śulbasūtra geometers were aware of
such algebraic interpretations of the procedure. Datta often gave an algebraic
interpretation of Śulbasūtra material that goes beyond what is reasonable to
assume on the part of the ancient Śulbasūtra geometers; see [4] for a critique
of this in connection with the problem of covering altars with square bricks.

Nevertheless, the question of the application of areas in the Śulbasūtras
is an intriguing one, and Seidenberg’s statement that “it is conceivable that
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contemplation of the bird-altar generated questions and answers that did not
make their way into the Śulvasūtras” [8, p. 337] has merit. In this spirit the
question will be explored further.

6 Transition from Rectangular Falcon to Realistic Falcon

Of the falcon-shaped altars found in the Śulbasūtras, the rectangular one is the
oldest. Its shape is a gross approximation to the shape of an actual bird of prey,
a defect that is rectified by the realistic falcons. Exactly how the given shapes
of the realistic falcons were found by the Śulbasūtra geometers is not stated in
the texts. Perhaps a general outline of the new falcon shape was conceived and
it was then sought to accomplish it by modifying the rectangular falcon. The
first realistic falcon in the Āpastamba-śulbasūtra, where explicit instructions
on how to redistribute the area of the rectangular falcon in order to obtain
the shape of the altar is given (see Āpastamba-śulbasūtra 15.3), could indicate
this. In any case, finding the given shapes must have involved shifting areas
around between the various parts of the falcon.

7 The Tail of the Falcon

For the two realistic falcons in the Āpastamba-śulbasūtra and the first realistic
falcon in the Baudhāyana-śulbasūtra, clear instructions are given on how to
measure the various parts of the altar. In the case of the second realistic falcon
in the Baudhāyana-śulbasūtra, however, the information that we are given in
the text is much more scarce. We are given the area of each of its parts
expressed as a number of a certain type of brick and a few more instructions
regarding the body and the wings.

From this information one can with relative ease find the shapes of the
falcon’s body, head, and wings using methods found in the Śulbasūtras. For
the tail, however, we have only the area and also, since the shape of the body
can be deduced, the length of the side where it touches the body. However,
finding the shape of the tail from only these two values is not straightforward.

The two realistic falcons in the Baudhāyana-śulbasūtra have the same tails,
which again are the same as the tail of the second realistic falcon in the
Āpastamba-śulbasūtra as well as the tails of the agnicayana altars in the shapes
of a heron and an alaja bird given in the Baudhāyana-śulbasūtra (12 and 13,
respectively), a fact that may explain the scarcity of information.

The tail is an isosceles trapezoid as shown in Fig. 3 (and also Fig. 2). When
partitioned into two triangles and a rectangle, the two triangles are right-
angled and isosceles.

The shape of the tail can further be found from information given in the
text, namely that its area equals that of 15 of a certain type of brick: two of
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Fig. 3. Tail of realistic falcon

Fig. 4. Tail of realistic falcon covered with bricks

these brick fit along the side of the body where the tail is to be attached, and
building from there, cutting three bricks diagonally to form the slope, the tail
emerges (see Fig. 4).

However, let us for a moment consider the problem from the point of
view of knowing only the area, A, of the tail as well as the length, a, of
the side where it is to be attached to the body. It was suggested above that
the Śulbasūtra geometers would probably have had to experiment with the
distribution of the total area between the parts of the falcon before finding
a suitable form for the realistic falcon, and in that process one can imagine
them ending up with a remaining area to be used for the tail as well as an
idea about its shape. This would have led to the problem that we are now
considering. How is the shape of the tail determined from this information?

We can start by partitioning the tail into two right isosceles triangles
and a rectangle. The left isosceles triangle is then moved to the right side
and combined with the other isosceles triangle to form a square. This square
together with the rectangle form a larger rectangle whose area is equal to that
of the tail. This is illustrated in Fig. 5.

That the Śulbasūtra geometers were familiar with such procedures is clear
from the method for converting a rectangle into an isosceles trapezoid found
in the Baudhāyana-śulbasūtra (2.6), a method that, as pointed out by Sen and
Bag, was known at the time of the Śatapatha-brāhman. a [10, p. 160], as well as
a passage in the Āpastamba-śulbasūtra (5.7) where the area of the mahāvedi ,
which, like the tail of the realistic falcon, is an isosceles trapezoid, is derived
by cutting off a right triangle from one side and attaching it on the other,
thus transforming the mahāvedi into a rectangle of the same area.

Let us consider the problem algebraically. If the longer side of the rectan-
gle is y and the shorter x, then, since x · y = A and y − x = a, x2 + a · x = A,
which shows that the problem is essentially that of solving a quadratic
equation.

If we instead consider the problem geometrically, the transformation out-
lined in Fig. 5 brings to mind Proposition II.6 of Euclid’s Elements, which can
be used to solve it.
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Fig. 5. Tail transformed into a rectangle
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J K B
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IGH
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Fig. 6. Euclid’s Proposition II.6

Fig. 7. Construction of the tail of a realistic falcon

In Fig. 6, ABCD indicates an original rectangle that has been partitioned
into a square (KBCF) and two equal rectangles (AJED and JKFE). The rect-
angle FCIG is equal in shape and area to these two rectangles, but is situated
on the adjacent side of the square KBCF. According to the proposition, the
combined area of the rectangle ABCD and the square EFGH equals the area
of the square JBIH.

With this in mind, the problem can now be solved as follows. First a square
of area A+(a

2 )2 is constructed. Two lines parallel to two adjacent sides of the
square are drawn at a distance of a

2 from the sides. This partitions the original
square into two squares and two rectangles. The square of side a

2 is removed
and the two rectangles are placed on the same side of the square. Then all
that remains to be done is to bisect the square diagonally and relocate one
half on the other side. The whole procedure is shown in Fig. 7.
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There is nothing in the procedure that goes beyond what is found directly
in the Śulbasūtras, and had a Śulbasūtra geometer approached the problem
in this way, it is likely that he would have been able to solve the problem as
outlined.

This does not, of course, demonstrate that this was how the dimensions of
the tail were determined in ancient times. In fact, it is more likely that it is not
the case. That all the realistic falcons, except one, as well as the altars shaped
like a heron and an alaja bird in the Baudhāyana-śulbasūtra have the same
tail speaks against the idea. It is more likely that a trial-and-error process
was carried out, or that a number of desired bricks were simply arranged to
form the tail and the rest of the falcon was suited to accommodate it. Once a
suitable tail had been arrived at, it was used again in other realistic falcons.

Still, the above considerations are worth pointing out because they provide
an example of how the solution of a quadratic equation via the application
of areas could have come about practically, i.e., not merely as a mathemati-
cal exercise, but in response to an actual problem. Throughout the history of
what we now call quadratic equations, from their origins in Mesopotamia some
4,000 years ago to the Renaissance, they have never been accompanied by con-
vincing problems related to practical matters. The problems are given more
as an exercise in abstract problem-solving than as a tool for handling practi-
cal matters. (I am grateful to Professor Victor Katz for these observations.)
The problem of the tail of the falcon would be a convincing practical back-
drop from which a quadratic equation could have arisen, if indeed this is how
the Śulbasūtra geometers solved it. An interesting question is whether later
Indian geometers arrived at this procedure from an investigation of Śulbasūtra
material.

8 Quadratic Equations in Ancient Mesopotamia

The first interpreters of Old Babylonian mathematics tried to understand it in
terms of modern mathematics. This led to an interpretation that was decidedly
algebraic. However, a more recent study of the material by Høyrup provides
us with an interpretation that is geometric. That this geometric interpretation
has some similarity with Śulbasūtra methods was noted by Høyrup, who also,
and rightly so, warned against drawing premature conclusions based on it:

The general design of some of their (the Śulbasūtras ’) constructions is
quite similar to the naive cut-and-paste procedures of the surveyors’
tradition; but arguments solely from the “general design” of a math-
ematical procedure are dangerous unless this design is very complex
or presupposes a fallacy that is not likely to occur often-both the
number system and plane geometry have their inner constraints that
may easily give rise to parallel developments. It is not to be excluded
that closer analysis of the Śulbasūtras will substantiate links to the
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Near Eastern surveyors; but for the moment this hypothesis is not
substantiated . . . [2, pp. 408–409]

Keeping this in mind, it is nevertheless of interest to make a comparison
between the Old Babylonian methods for solving quadratic equations and the
one outlined above in connection with the tail of the falcon. As will be seen,
there is a clear similarity. Here we will focus on one example, a problem from
tablet YBC 6967, which is published in [6, p. 129]. According to the inter-
pretation of Neugebauer and Sachs, the problem is algebraic, and amounts to
solving the simultaneous equations: x · y = 60 and y − x = 7, which yields

x =

√(
7
2

)2

+ 60 − 7
2

= 5 and y =

√(
7
2

)2

+ 60 +
7
2

= 12.

Høyrup [2, pp. 55–58], however, convincingly interprets the problem geomet-
rically, according to what he calls cut-and-paste geometry. The approach is as
follows:

In Fig. 8 we start with an original rectangle about which it is known that its
area is 60 and that the difference of its sides is 7. The rectangle is partitioned
into a square and two equal rectangles of width 7

2 = 3 1
2 . One of these rectangles

is moved on to the adjacent side of the square, and a square of side 7
2 is added in

the corner to form a larger square. This larger square has area 60+( 7
2 )2 = 72 1

4 ,

and thus its side is
√

72 1
4 = 8 1

2 . The longer and the shorter sides of the original

rectangle can now easily be found as 8 1
2 + 3 1

2 = 12 and 8 1
2 − 3 1

2 = 5.
As noted above, the similarity between this approach and the one outlined

in connection with the tail of the falcon is clear. In both cases, the difference
between the two sides of a rectangle as well as its area are known, and by
moving and adding areas, a square, from which the sides of the rectangle can
be deduced, is created. In fact, the Old Babylonian method, as reconstructed
by Høyrup, is exactly what is required to solve the problem of determining
the tail of the falcon. The approach is intuitive, simple, and in harmony with
the methods we find in the Śulbasūtras.

In 1988, Pingree remarked that “the question of the origin of this (Śulba-
sūtra) geometry . . . and its relations both to Mesopotamian mathematics and
to a Vedic craft tradition seems . . . to be yet unanswered” [7, p. 184]. This is
an important question, and further detailed analyses need to be carried out
before it can begin to be answered.

Fig. 8. Mesopotamian cut-and-paste geometry
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1 Introduction

The Vedic scholars were keen observers of the sky and they associated Rigvedic
the concept of time with the motion of the sun. During the early Rigvedic age
it had been recognized that one year was composed of 360 days and 360 nights
as in the following hymn [24, I, 164, 11]:

dv������ �	
���
���
���	� ��� �	�dy��� ���।

a� �� �� a��� 	��� �� ��
a� � � ���	� 	���	�!� ���� "॥

dvādaśāraṁ nahitājjarāya
varvarti cakraṁ paridyāmr. tasya |

ā putrā agne mithunāso
atra sapta śatāni viṁśatísca tasyuh. ||

That is, the sun’s wheel consisting of twelve spokes (months) revolves
in the sky and is never destroyed. Oh! Fire, on this wheel are mounted
seven hundred and twenty people (360 days and 360 nights).

The above hymn implies that for ordinary purposes the year consisted
of 12 months and 360 days, i.e., each month was composed of 30 days.
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The Atharvaveda , on the other hand, categorically states that the earth
revolves around the sun and the latter divides day and night into thirty parts
according to the following hymns [4, VI, 30, 1 and 3]:

a��� $%" �� 	!�� ��&�� �'����� �� �"।
	���� � pr�')��* ॥ 1॥

	���+ ,��� 	� ��
	� ��-+ ���$� a	�	r��+ ।
pr	� �����
dy��	/" ॥ 3॥

āyaṁ gauh. pr. śnir kramīdasa danmātaraṁ purah. |
pitaraṁ ca prayantsvń || 1 ||

trísad dhāmā vi rājati vāk pataṁgo aśísriyat |
prati vastorahardyubhih. || 3 ||

That is, this earth revolves in space, it revolves with its mother, water,
in its orbit. It moves round its father, the sun. Thirty divisions of the
day (and night) are illuminated by the rays of the sun. The sun alone
is the shelter and support of our speech.

The above hymns affirm that the sun divides a day or a night into thirty parts.
This implies that one such part is equal to 24min, which was later called a
“nad. ī.” Since Atharvaveda was composed around the year 3000 b.c.e. (cf.
[21, Sect. 2]), it seems that “nad. ī” is the oldest known unit of time on this
planet.

It may be mentioned here that in a more recent work, Hunger and Pingree
have pointed out that this unit of time was “probably” borrowed from Baby-
lonian sources. They, in fact, write [11, p. 46]:

This (Babylonian) measure of time occurs again in the zigpustar texts,
and is the equivalent and probably the source of the Indian division
of the nychthemeron into 30 muhūrtas, and then into 60 ghatikās or
nādikās, a unit of time measurement that first appears, with many
other Mesopotamian features, in the Jyotis.avedāṅga composed by
Lagadha in ca.–400 (400 b.c.e.).

Also, they write (loc. cit.):

Babylonian omens as well as astronomical knowledge was transmitted
to India, beginning probably around the middle of the first millennium
b.c.e.

It is necessary to emphasize here that Lagadha composed “Vedāṅga Jyotis.a”
around the year 1500 b.c.e. (for details see [9, p. 124] and [2]) and the
term “ghatikā” does not appear anywhere in this text. Ghatikā, of course,
is a colloquial word, which came into use in India after the composition of
Pancasiddhāntikā by Varah.mihira in the year 505 c.e. We shall discuss the
measurement of nād. ī in subsequent sections.
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Since the Atharvaveda was composed much earlier than the appearance of
the Babylonian civilization in Mesopotamia, the statement that the Indians
borrowed the unit of time in the form of nād. ī is untenable. Moreover, Hunger
and Pingree have mentioned that the astronomical material presented by them
belongs to a period later than the first half of the second millennium b.c.e.

They write [11, p. 1]:

What this volume does attempt to cover is the astronomical material
found in the tablets of both omen texts and purely astronomical texts
from the earliest times – the Old Babylonian period of, probably,
the first half of the second millennium b.c.e. – down to the latest –
the period of the Parthian control of Mesopotamia in the late first
century c.e.

The above statements clearly ensure that the unit of time nād. ī, which
has been described in detail by Lagadha in Vedāṅga Jyotis.a, is an indigenous
Indian product and not borrowed from Babylonian sources.

This paper is divided into nine sections. Section 2 deals with the divisions
of time before Varah.mihira, and in Sect. 3 we present the partitions of time in
Br.ahatsamhita composed by Varah.mihira. Section 4 is devoted to the study
of divisions of time in Brahmasphut.a-Siddhānta composed by Brahmagupta
in 628 c.e., while Sect. 5 deals with the partitions of time in the modern
Sūrya-Siddhānta.

Section 6 deals with the measurement of time prior to Varah.mihira, while
Sect. 7 is devoted to the study of Ambu-Yantras (water-clocks) designed by
him. In Sect. 8, we present Ambu-Yantras described by various astronomers
on the lines of Varah.mihira.

The last section of this paper deals with the Śanku-Yantras before
Varah.mihira and also designed by him, which were in common use for
many centuries.

2 Divisions of Time Prior to Varah.mihira

2.1 Measures of Time in Vedāṅga Jyotis.a

Lagadha was a renowned astronomer of ancient India, who composed an as-
tronomical text entitled Vedāṅga Jyotis.a in a systematic and coherent way
around the year 1500 b.c.e. (for details see [9], p. 124, [16], pp. 13–15, and
[2]). He was, in fact, the first person to have developed new techniques for cal-
culating unknown quantities from known quantities and used them in some
astronomical calculations. Vedāṅga Jyotis.a is extant in two recensions, namely
the R. gveda–Jyotis.a (or R. gjyotis.a) and Yajurveda–Jyotis.a (or Yajus.jyotis.a).
Of course, a number of verses in these scriptures are similar. In R. gjyotis.a,
which is extant, there are 36 verses, while Yajus.jyotis.a consists of 44 verses.

Pure Mathematical Physics



78 G.S. Pandey

Also, there is an Atharvaveda-Jyotis.a consisting of 162 verses divided into 14
chapters, but this is not considered as a part of Vedāṅga Jyotis.a (for details
see [26, p. 468]).

Svamī Satya Prakash Sarasvat̄i, using the following couplet of the
R. gJyotis.a (cf. [15]; 7 and [16], 8), has pointed out that Lagadha was a
Kashmiri Brāhman.a:

,���� 	,���� pr��"
0�� hr�� u��$�%।

�	04��% 	������"
56�� 
7 )������ �� ॥

dharmavr. dhirapāaṁ prasthah.
ks.apā hrāsa udaggatau |

daks. in. etau viparyāsah.
s.an. muhūrtyayanena tu ||

That is, during the northward course of the sun the increase of the day
and the decrease of the night is one prastha of water, while the reverse
is the case during the southward course. During the whole course the
difference between the day and night is of six muhūrtas.

Svamī categorically writes [26, p. 471]:

We have nowhere in the plains of India an increase of 6 muhūrtas in
the days or in the nights. Such an observed increase is seen only in
the north-western corner of this country. This very much means that
Lagadha belonged to somewhere near Kashmir where he observed such
a difference between the lengths of days and nights. It corresponds to
the 34◦ 46′ or 34◦ 55′. These latitudes correspond to somewhere not
far from Srinagar, Kashmir.

Vedāṅga Jyotis.a, motivated from the description in Atharvaveda of the divi-
sion of a day into thirty parts, has prescribed a practical unit of time and
named it nād. ī as in the following verse (cf. [15, 23] and [16], p. 29):

�8�	� �������� ,� ��	�
���9-� �: �4��" pr����+ ।

	�	/	��
&�� -� ;�<��� -���
�'��	;-������ /��� pr��4�+ ॥ 24॥

palāni paṁcaśadapāṁ dhr. tāni
tadād. hakaṁ dron. amatah. prameyam |

tribhirvihīnaṁ kud. avaistu kārya
tann̄ād. ikāyāstu bhaveta pramān. am ||24||
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That is, a vessel with the capacity of 50 palas of water is the measure
of one ādhaka and the measure of a dron. a is obtained from it (which
is equal to 4 ādhakas). Three kudavas deducted from a dron. a provides
the measure of a nād. īkā (time).

In other words, this verse implies that

50 palas = 1 ādhaka ,

4 ādhaka = 1 dron. a = 200 palas,

1 nād. īkā = 1 dron. a − 3 kudavas.

Svamī Satya Prakash Sarasvat̄i, in order to define a nād. īkā, writes [26, p. 501]:

The ancient practice in this country was to have a ghatikā vessel of
the capacity of 6 1

4 Prastha of water with a hole at the bottom. When
floated upon water, it sank with a sound (��� = nāda) as soon as it
was full of water which entered the vessel. This indicated the lapse of
one nād. īkā or one ghatikā time.

In the above statement “the ancient practice” reflects that the ghatikā vessel
was being used even before the composition of the Vedāṅga Jyotis.a. Since
Svamī has not given any proof for the validity of his statement, it is still an
open problem. Much later, however, the Sūrya-Siddhānta provides a descrip-
tion of the ghatikā vessel, which will be discussed in a subsequent section.

As explained by Svamī (loc. cit.), the unit of time nād. īkā is related to
dron. a in the following way

50 palas = 1 ādhaka ,

4 ādhakas = 1 dron. a = 200 palas,

4 prasthas = 1 ādhaka = 50 palas, (2.1)

4 kudavas = 1 prastha = 12
1
2

palas,

−→ 1 kudava = 3
1
8

palas and 3 kudavas = 9
3
8

palas.

Hence, according to the above verse, we see that

1 nād. īkā = 1 dron. a − 3 kudavas,

= 200 palas − 9
3
8

palas,

= 190
5
8

palas = 190
5
8
÷ 12

1
2

prasthas, (2.2)

= 15
1
4

prasthas,

−→ 12 nād. īkās, = 183 prasthas.
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Since during the northward course of the sun the increase of the day is one
prastha of water, one ayana is composed of 183 days.

−→ 1 year = 366 days.

An analogous verse in the R. gjyotis.a also partially affirms the above measure-
ments [15, 16]:

��	;-� dv� �� 
7 �����
�����)�8��9-�+ ।

a�9-�)-� 	?/-� �: �4"
-� ;�<��,��� 	�	/"॥ 17॥

nād. ike dve muhūrtastu
paṁcāśatpalamād. hakam |

ād. hakātkumbhikā dron. ah.
kud. avairvardhate tribhih. ||17||

That is, two nād. īkās form one muhūrta, while one ādhaka consists
of fifty palas. One nād. ī increased by three kudavas is a kumbhaka or
dron. a.

The Vedāṅga Jyotis.a also divides a civil (savan) day into muhūrtas, nād. īkās,
and kalās as in the following verse (cf. [15], and [16, p. 24]):

-8� �� �	���� ����+
dv� �� 
7 ���� ��	;-�।

dy� 	���� �)-�8����
�� 5A B�&C�	,-� /���+ ॥ 16॥

kalā daśa savísāṁ syāt
dve muhūrtasya nād. ike |

dyutriṁśata tatkālānāṁ
tu s.at.a chatītryadhikā bhavet ||16||

That is, ten plus a twentieth kalās of time makes one nād. ī, and
one muhūrta is equal to two nād. īs. Thirty muhūrtas form a day
(= ahorātra, i.e., day and night) and there are 603 kalās in a day.

Thus, in other words, we have

1 nād. īkā = 10
1
20

kalās ,

2 nād. īkās = 1 muhūrta, and

30 muhūrtas = 60 × 201
20

kalās = 603 kalās = 1 day (ahorātra). (2.3)
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The unit kāstha is the 124th part of a day as in the following couplet [15,
Yajurjyotis.a 12]:

dy� 
��� ��� ��)����
���	����tt� �<	--�।

/�$�)���F��� �������+
	�	�����	,-� �	�॥

dyuheyaṁ parva cetpāde
pādastriṁśattu saikikā |

bhāgātmanāa. pavr. jyāṁśān
nirdísedadhiko yadi ||

The first part of the above couplet implies that the first pāda or a quarter of
a kalā is equal to 31 kāsthās, which ensures that

1 kalā = 124 kāsthās .

The relationship between kāsthās and kalā is also provided by the following
verse [15, Yajur. jyotis.a 30]:

���	���� ���
�%G4� e-���+ a���'�� 5�"।

���4�� ���H��� G����
-�GI���� �<� ��" -8�"॥

paṁcatriṁśaṁ śataṁ
paus.n. am ekonam ayanānyr. s.eh. |

parvan. āṁ syāc̄atus.pādo
kās. t.hānām. caiva tāh. kalāh. ||

That is, the total number of the sidereal revolutions of the sun (in
a yuga) is 135, the ayanas of the moon are one less (i.e., 134). One-
fourth of the number of (lunar) parvas (in a yuga) is called a pāda
and a similar number of kāsthās (i.e., 124) is a kalā.

The above couplet, therefore, prescribes that

Number of lunar parvas in a yuga = 124, and
1 kalā = 124 kāsthās . (2.4)

The relationship between a kāsthā and guruvaks.aras (letters of double mātrās
(long syllables)) is prescribed by the following couplet (cf. [15], R. gjyotis.a 18
and [16, p. 30]):

�� �-� /�� -+ ���"
�7 ��� dy7 	� �����।

����	� � �'��
+ �"
-�GI� �'��0�� /���+ ॥
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sasaptakaṁ bhayuk somah.
sūryo dyūni trayodaśa |

navamāni ca paṅcāhnah.
kās. t.hā pancāks.arā bhavet ||

That is, the moon is in possession of each naksatra (asterism) sixty-
seven times in a yuga, while the sun remains in each naksatra for 13
days and 5/9 part of a day. A kāsthā is the time taken to pronounce
five aks.aras.

The last line of the above verse ensures that the time taken to pronounce
5 aks.aras or 10 mātrās is equal to 1 kāsthā. (2.5)

Thus, finally, combining (2.3), (2.4), and (2.5), these ancient units of time
may be arranged in the following order:

124 kāsthās = 1 kalā,

10
1
20

kalās = 1 nād. īkā ,

2 nād. īkās = 1 muhūrta,

30 muhūrtas = 60 nād. īkās = 603 kalās = 1 (civil) day.
The Yajus.jyotis.a prescribes that one solar year is composed of three hundred
and sixty-six days as in the following verse [15, 27]:

	��)�
��� �5A5	GA�J�"
5A �����F���।

���� dv��� �%���)�� "
e�)�'� $� 4� �� $�+ ॥ 28॥

trísatyahanaaṁ sas.at.as.as.t.irabdah.
s.at.a cartavoa. yane |

māsā dvādaśa saurāstyuh.
etatpanca gun. aṁ yugam ||28||

That is, three hundred and sixty-six days form one year (solar), six
seasons (rt.us) and two ayanas (the northern and the southern progress
of the sun). Twelve solar months form a year and five years make
a yuga.

Hence it is clear that:

1 solar year = 366 days,
= 12 months (solar),
= 6 seasons (rtus),
= 2 ayanas (Uttarayana, and Daksināyana),

−→ 1 solar month = 30
1
2

days.
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It is interesting to mention here that the year consisting of 360 days and 360
nights was fairly known during the R. gvedic age (see [21], Sect. 1). Also, the
concept of a yuga was known to early Vedic scholars. In the following hymn
of the Yajurveda, for instance, the names of all the five years of a yuga are
clearly given [30, Chap. XXVII, p. 45]:

���)��� F	� �	��)��� F	�
i���)���F	� i��)���F	� �)���F	�।

saṁvatsaro a. si parivatsaro a.si
idāvatsaroa. si idavatsaroa. si vatsaroa. si |

Griffith writes (loc. cit., p. 388):

Saṁvatsara and the rest (i.e., Parivatsura, Idāvatsara, Idvatsara and
Vatsara) are the names given to the years of the five-year cycle in-
tended, with the aid of an intercalary month, to adjust the difference
between the lunar and the solar year.

During the time of the composition of the Vedāṅga Jyotis.a a yuga consisting
of five years was fully recognized and the names of these constituent years
were the same as described in the Yajurveda.

2.2 The Concept of Moment (Ks.an. a)

The concept of the minimal unit of time appears in the Yoga-Sutras of
Pataṅjali in connection with the attainment of knowledge by “Saṁyama.”
Pataṅjali ordains in aphoristic form (cf. [23], Book III, Hymn 52, p. 335):

04 ��+ ����" �����	dv��-
� j���+ ।
ks.an. a tatkramayoh. saṁyamādvivekajaṁ jñānam |

Thus, according to Pataṅjali, knowledge is acquired from samyama on a
moment and its sequence.

Vyāsa, writing a commentary on the above maxim, provides two definitions
of a ks.an.a (moment). He writes [loc. cit., p. 335]:

����-5������� �: M�� ���4� ����
�����-5� �����" -�8" 04"।

����� �� ����� �	8�" ����4� "
�7 �� ���� 

+ ���� tt� ����� ��?�dy�� ;

�-�8" 04"॥
yathāpakars. aparyantaṁ dravyaṁ paraman. urevaṁ

paramāpakars. a paryantah. kālah. ks.an. ah. |
yāvatā vā samayena calitah. paramān. uh.

pūrva deśaṁ jahyāduttara deśamupasampadyet ;
sakālah. ks.an. ah. ||
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As mentioned above, Vyāsa has given two definitions of a ks.an. a (moment).
According to the second definition, moment is the time taken by an atom in
motion on leaving one point in space and reaching the adjacent point. The
time interval of this displacement is known as a moment and the continuous
flow of moments is its sequence.

In the first definition, Vyāsa asserts that since the minimal object (or
smallest particle of cognition) is an atom, as such a moment is the minimal
unit of time. This implies that a moment is the smallest part of time in which
the minutest mutation is recognized by a yogī.

2.3 Reckoning of Time in the Arthaśāstra

It is said that Kautilya (or Cān.akya), the renowned author of the Arthaśāstra,
was born at a village, Cān.aka (at present known as Canakā) situated between
Pātaliputra (Patna) and Gayā. He was the prime minister and mentor of
Emperor Candragupta Maurya. He composed the Arthaśāstra around the year
317 b.c.e. In Book II, Chap. 20, he has described various divisions of time in
the form of thirty-nine Sutras (from 28 to 66) (cf. [12, pp. 423–429] and [13,
pp. 139–141]). In Sutras 28 and 29 he writes:

-�8����� NO���+ । 28।
�� A� 8�� 	�	�5" -�GI� -8� ��	8-�

�� 
7 tt�" �7 ����� /�$% 	���� ��	�"
�0� ��� P�� ���� ���)���

�� $	�	� -�8�"। 29।
kālamānamat-ūrdhvam |28|

tut.o lavo nimis.ah. kās. t.hā kalā nālikā
muhūrttah. pūrvāpar bhāgau divaso rātrih.

paks.o maas r. turayayaṁ saṁvatsaro
yugamiti kālāh. |29|

That is, hereafter measurement of time is explained. These are tuta,
lava, nimesa, kāsthā, kalā, nalika, muhurta, forenoon, afternoon, day,
night, fortnight, month, season, ayana, year, and yuga (cycle of years).
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Kautilya defines these divisions in the following form (loc. cit., pp. 424–425):

dv% �� A% 8�" 30
dvau tut.au lavah.

i.e., 2 tutas = 1 lava.

dv% 8�% 	���5" 31
dvau lavau nimes.ah.

i.e., 2 lavas = 1 nimesa.

��� 	���5�" -�GI� 32
paṁca nimes. āh. kās. t.hā

i.e., 5 nimesās = 1 kās. t.hā.

	���)-�GI�" -8� 33
triṁśatkās. t.hāh. kalā

i.e., 30 kās. t.hā = 1 kalā.

�)��	���)-8�" ��	8-� 34
catvāriṁśatkalāh. nālikā

i.e., 40 kalās = 1 nālikā.

	dv��	8-� �� 
7 tt�" 36

dvināliko muhūrttah.

i.e., 2 nālikās = 1 muhūrttah. .

����� �� 
7 ��� 	���� ��	�!�
�<�� ��!��� 
� � ��	� /��"। 37

paṁcadaśa muhūrto divaso rātrísca
caitre cāśvayuje ca māsi bhavatah. |

That is, a day and night of fifteen muhūrtas occur in the months of
Caitra and Aśvayuja (Aśvin).

��" ��� 	�	/�� 
7 �<��'���"
56���� �,��� h��� ��	�। 38

tatah. paraṁ tribhimuhūrtairanyatarah.
s.an. māsaṁ vardhate hr.sate ceti |
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That is, after that, one of them (the day) increases by three muhūrtas
for six months and then decreases in the same way, and vice versa the
other (night).

������
�����" �0" 43
paṁcadaśāhorātraah. paks.ah.

That is, fifteen days and nights make a fortnight.

	dv�0� ���" 46
dvipaks.o māsah.

That is, two fortnights make a month.

Although Kautilya describes seven types of months, only the following
three are associated with the calendar system:

	����
����" -�� ���<" 47
triṁśadahorātrah. karma māsaih.

That is, thirty days and nights make a work (savan) month.

��,�" �%�" 48
sārdhah. saurah.

That is, a half day more (than a work month) makes a solar month.

a,�'�7 �!��'�: ���" 49
ardhanyuunaścāndra māsah.

That is, a half day less (than a work month) makes a lunar month.

As in the Vedāṅga Jyotis.a, during the time of Kautilya too, a yuga was
composed of five years. He writes (loc. cit., 63 and 64):

dva��" ���)��"।
��������� �� $�+ ॥

dvayanah. saṁvatsarah. |
paṁcasaṁvataro yugam ||

That is, two ayans form a year and five years make a cycle (yuga).

Kautilya, discarding the yuga system of the Manusmr. ti and the Puran. as,
has followed the pattern of Vedāṅga Jyotis.a. The modern Sūrya-Siddhānta,
on the other hand, has adopted the Paurānic yuga system, which will be
discussed in a subsequent section.
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2.4 Divisions of Time in Āryabhat.īya

It is beyond discussion that Āryabhat.a was one of the greatest mathematicians
and astronomers of ancient India. According to the first stanza of his famous
work Gan. itapādah. , he received knowledge of mathematics and astronomy at
Kusumapura. He writes [3, p. 45]:

TU
� --� -�	� -T� , -/� $� -�	� -

-� 
 -$� V --�4 -/$4��+ ���-� )�।
a���/A	���
 	�$	��

-� �� � �� �� FW�	���� j���+ ॥ 1॥

brahama-ku-śaśi-budha-bhr. gu-ravi-
kuja-guru-kon. a-bhagan. ān namaskr. tya |

āryabhat.astivah nigadita
kusum pure a. bhyarcitaṁ jñānam ||1||

That is, after doing obeisance to Brahma, the Earth, the Moon,
Mercury, Venus, the Sun, Mars, Jupiter, Saturn and to the constel-
lations, Āryabhat.a sets forth the venerable knowledge (of astronomy)
at Kusumapura.

The above verse clearly affirms that Āryabhat.a composed Āryabhat. īya
at Kusumapura. Almost all commentators of Āryabhat. īya have accepted
Kusumapura as the workplace of Āryabhat.̄iya. Smith [25, p. 156] has men-
tioned that Kusumapura cannot be identified with Patna (Pataliputra), but it
is a place not far from modern Patna. Of course, a number of mathematicians
of Bihar firmly assert that the present-day Phulwari (Garden of Flowers)
Shar̄if is the place “Kusumapura” described in Āryabhat. īya, which is about
four kilometres from Patna. Since the meaning of Kusumapura is synonymous
with Phulwari, the above assertion seems to be appropriate. For other details
see [14, pp. 14–17].

There is no dispute about the year of his birth. He writes in
“Kālakriyāpadah.” of Āryabhat. īya (cf. [3], pp. 201–202):

5GA+ �J����� 5	GA����
M��&�����!� �� $����"।

C�	,-� 	���	��J��� -
���
 �� 
'��� F �&��"॥ 10॥

s.as. t.yabdānāṁ s.as.t.iryadā
vyatītāstrayaśca yugapādāh. |

tryadhikā viṁśatirabdāsa -
tadeh mam janmano a. tītāh. ||10||
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The above verse states that at the time of the composition of
Āryabhat. īya, sixty yugas of sixty years and three-quarter yugas
had elapsed and at that time Āryabhat.a was 23 years of age. This
implies that at that time Kr.tayuga, Tretā, and Dvāpara had elapsed
and 3600 years of Kaliyuga also had passed, and Āryabhat.a was 23
years old.

Since, according to the Hindu calendar system, Kaliyuga commenced
from February 18, 3102 b.c.e., Āryabhat.a composed Āryabhat. īya in the year
(3600–3101) = 499 c.e. and he was born in 476 c.e.

Āryabhat.a rejected the highly artificial scheme of time-division pre-
vailing at that time and replaced it with the following:

1 day of Brahma or Kalpa = 14 manus ,
1 manu = 72 yugas ,
1 yuga = 43, 20, 000 years.

In one section of Āryabhat. īya entitled:

-�8	��� ���"
kālakriyā pādah.

That is, In “Reckoning of Time,” he provides the divisions of time in
detail in almost the same way as in earlier works. In the first couplet
of this section, he writes [3. p. 172]:

�5� dv��� �����+ -
	���� 	���� /���+ � ������ ।

5	GA���;+ �� 	���"
�	GA!� 	���	;-� ��;&॥

vars.a dvādaśa māsās -
triṁśad divaso bhavet sa māsastu |

s.as. t.irnād. yo divasah.
s.as. t.ísca vinād. ikā nād. ī ||

That is, one year consists of twelve months, and thirty days form
a month. A day (ahorātra) is composed of sixty nād. īs, and sixty
vinādikās make up a nād. ī .

Aryabhata further writes (loc. cit., p. 173):

$� ��0��	4 5	GA�+
	���	;-�0&� 5;�� �� pr�4�"।
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gurvaks.arān. i s.as.t.ir
vinād. ikārks. ii s.ad. eva vā prān. āh. |

That is, sixty guruvaksaras form a vinādikā, or the time taken for six
respirations (prāna) make a vinādi (or vinādikā).

Following the traditions of the Manusmr. ti and the Purānas, Āryabhat.a
has given the length of time equal to one yuga of Brahmā. In the following
verse he writes [3, p. 196]:

�	��5X ���� G�� ��	�
	����+ $� 4� /�	� 	�C��+ ।

	�C�� dv���� $� 	4��
	�M�� �5� 	�	�	��GA�+ ॥ 7॥

ravivars.aṁ mānus.yaṁ tadapi
triṁśadgun. aṁ bhavati pitryam |

pitryaṁ dvādaśam. gun. itaṁ
divyaṁ vars.a vinirdis. t.am ||7||

That is, the solar year is a human year, and thirty human years form
one pitr. year. Twelve pitr. years make up one divya or divine year.

He further writes (loc. cit., p. 197):

	�M�� �5� �
��� $U
 ����'��
�� $� 	dv5A+ - $� 4�+ ।

aG��tt�� �
��� TU�
+ ��
	���� $U
�� $����+ ॥ 8॥

divyaṁ vars.a sahastraṁ graha sāmānyaṁ
yugaṁ dvis.at.ka gun. am |

as. tottaraṁ sahastraṁ brāhmo
divaso grahayugānām ||8||

That is, 12 × 1000 divya varas form a yuga, and 1008 yugas constitute
a day of Brahmā.

In other words, we have the following divisions of a day of Brahmā:

30 (solar) years = 1 pitr. year,
12 pitr. years = 1 divya year,

12, 000 divya years = 1 yuga,

−→ 1 yuga = 4, 320, 000 years.
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As in the Purān.as, these 4,320,000 years of a yuga are shared by Kr.ta, Tretā,
Dvāpara and Kāli yugas in the ratios 4:3:2:1, respectively. It seems that for
practical purposes Āryabhat.a considers a yuga of 60 years.

About the beginning of a day, Āryabhat.a has propounded two postu-
lates, which have been criticized by Varah.mihira in the following verse of
the Pancasiddhāntikā (cf. [28, XV, 20] and [29, pp. 420–421]):

8*+ -�,� ��� ����
	�� pr�� 	tt� 
$�� ����/A"।

/7 �" � e� �7 ���
���)pr/� )��" 8*+ -����+ ॥ 20॥

lańkārdha rātra samaye
dina pravr. t̄iṁ jagāda cāryabhat.ah. |

bhūyah. sa eva sūryo
dayātprabhr. tyāh. lańkāyām ||20||

That is, Āryabhat.a has stated that the day begins from midnight at
Lankā, and again he says that the day begins from sunrise at Lankā.

He further writes (loc. cit., XV, 25):

8*+ -�,���� ���� �'��+ �7 ������H�<�।

lańkārdharātra samayā danyat sūryodayāc̄aiva |
That is, counting time from midnight at Lankā is different from the
reckoning from sunrise.

Āryabhat.a has given the divisions of time on the pattern of the Purānic sys-
tem. Although he has not described in the Āryabhat. īya the instruments to
measure them, Ôhashi has mentioned that in an other work of his entitled
Āryabhat.a Siddhānta, which is no longer extant, he has given the descriptions
of a number of astronomical instruments, including Śanku-yantra and a water
instrument to measure time. For details see [18].

3 Divisions of Time in the Br.hatsaṁhitā

Varah.mihira composed the Br.hatsaṁhitā around the year 550 c.e. It was his
last work, covering almost all aspects of human life in beautiful poetic forms.
Commenting on his poetic art in the Br.hatsaṁhitā, Bhat writes [30, p. XV]:

When we go through this work, we are reminded of Homeric similes
and the linguistic elegance and charm of Vālmīki, Vyāsa, Bhāsa and
Kālidāsa.
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Chapter II of Br.hatsaṁhitā, entitled “����)���7 ��O���"” (sāṁvatsaras-
ūtrādhyāyah. ), presents a brief description of the qualifications of an astrologer.
In the following paragraph it describes the various divisions of time that must
be fully known to an astrologer [30. p. 8]:

�� $U
 $	4�� �%	8� ���- ��	�GI
�%� �<���
�5� ��������5� 	�d�'��5�

�� $ �5���������� �0�
�������
�� 
� �� ��;& pr�4 �� 	A �� A+ ��dy����	�-��

-�8�� 0���� � ��tt�॥ 4॥
tatra graha gan. ite paulísa romaka vāsis. t.ha

saur paitāmahes.u paṁcasvetes.u siddhāntes.u
yuga vars. āyanartumāsa paks. āhorātrayāma

murhuta nād. ī prān. a trut.i trut.yā dyavayavādikasya
kālasya ks.etrasya ca vettā ||4||

That is, an astronomer must have studied the works of Paulísa,
Romaka, Vāsist.ha, Saur, and Paitāmaha. He must be well-versed in
the various subdivisions of time such as yuga (=43,20,000 solar years),
year, solstice, rtu (consisting of two solar months), month, fortnight,
ahorātra (a solar day), yāma (one-eighth of a solar day = 3 hours),
muhūrta, nād. ī, prān. a, trut.i, and other divisions of time.

Bhat (loc. cit.) has given the following table for the relationships between
various measures of time:

Time taken to pronounce one syllable is a Nimeśa,

2 Nimeśas = 1 Trut.i ,
2 Trut.is = 2 Lava,

2 Lavas = 1 Ks.āna,

(3.1) 10 Ks.ānas = 1 Kāsthā,

10 Kāsthās = 1 Kalā,

10 Kalās = 1 Nādikā ,

60 Long syllables = 1 Vinādi ,

or

6 prānas (Breaths = one inspiration and one expiration) = 1 vinādi.

The above statements of Varah.mihira imply that in those days, knowl-
edge of various divisions of time was compulsory for all astronomers and
astrologers.
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4 Partitions of Time in the Brahmasphut.a Siddhānta

Brahmagupta was one of the prominent mathematicians of “Varah.mihira
Gurukula.” He composed the Brahmasphut.a Siddhānta at the age of thirty.
He writes (cf. [6], XXIV, pp. 7–8):

r& ������	�8-� r&M��ZU �� [� �� �� �-�� ��4��+ ।
������+ ���� \�<��5���<" ���	/��&�<"॥ 7॥

TU
�+ �]� A 	�d�'�" ��
�+ $	4�j $�8 	��+ pr&)�<।
	����+ �5��4 -� �� 	
G4� �� � TU
+ � $�  �� �॥ 8॥

śrī cāpavaṁśatilake śrīvyā-ghra mukhe nr.pe śakanr.pān. ām |
paṁcāśat saṁyuktairvars.aśataih. paṁcabhiratītaih. ||7||

braham sphut.a siddhaanth. sajjan gan. itajña gol vit prītyai |
triṁśad vars.en. a kr. to jis.n. usuta brahm gupte n ||8||

That is, during the rule of Vyāghramukha, a great king of the
Cāpa clan, when 550 years of the Śaka era had passed (i.e., 628
c.e.), Brahmagupta, son of Jisnu, at the age of thirty, composed
Brahmasphut.a Siddhānta for the benefit of good mathematicians and
astronomers.

For the life history of Brahmagupta see [26], Chap. III and [7], Chap. I. About
the partitions of time, Brahmagupta writes [6; I, 5]:

pr�4<	����	;-�0&� 5;+ 	/Z�	A-� 5GA+ ��।
Z	A-� 5GA+ �� 	���� 	������� 	����� ����"॥

prān. airvinād. ikārks. ī s.ad. bhirghat.ikā s.as.t.yā |
ghat.ikā s.as.t.yā divaso divasānāṁ triṁśatā māsāh. ||

The above verse provides the following units of time:

6 Prānas = 1 R. ksa-vinād. īkā (or 1 pala) (= 24 seconds),
60 Vinād. īkās = 1 ghatikā (or Nād. ī), and

60 Ghatikās = 1 Day (ahorātra).

The above divisions of time are similar to those pointed out by Varah.mihira
in the Br.hatsamhita.

5 Reckoning of Time in the Modern Sūrya-Siddhānta

It is well-known that the extant Sūrya-Siddhānta at present is somewhat
different from that presented by Varah.mihira in his Paṅcasīddhāntikā.

Although the Sūrya-Siddhānta known to Varah.mihira resembles its present
form in fundamental features, the two differ significantly at a number of points
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(for details see [28], pp. xii–xvi). It is also speculated that Varah.mihira too
introduced some changes in the old Sūrya-Siddhānta, but as pointed out by
Thibaut and Dvivedi, these changes were made for the sake of convenience in
calculations. Thibaut and Dvivedi write [28, p. xv]:

The investigation of special cases thus certainly favours the conclu-
sion that the changes which the old Sūrya-Siddhānta has undergone in
Varah.amihir’s representation are purely formal, and that convenience
of calculation is held by him to be a consideration of altogether sec-
ondary importance.

Shukla [27, pp. 15–29] has discussed in detail a number of differences between
the results obtained by Varah.amihir’s Sūrya-Siddhānta and its present form.

The various units of time are described in the first chapter of the mod-
ern Sūrya-Siddhānta. The following verse provides the basic concept of time
(cf. [27], Chap. I, 10; p. 2 and [8], p. 5):

/7 �����'�-� )-�8"
-�8� F'�" -8��)�-"।

� 	dv,� ��7 8 �7 ^�)���+
�7 ��!���7 �� e� �॥

bhūtānāmantakr. tkālah.
kālo a. nyah. kalanātmakah. |

sa dvidhā sthūla sūks.matvān
mūrtaścāmūrta eva ca ||

That is, time is the destroyer of the world, and another time makes it
move. This latter (time), depending on whether it is gross or minute,
is known as real (mūrta) or unreal respectively.

In the next stanza we find the difference between real and unreal time and its
basic division into units [27, Chaps. I, II]:

pr�4	�" -	��� �7 ��"
C�� A+ ��dy� F�7 �� ��j-"।

�;	/" pr�4<" 	���;&
���tt)5GA+ �� ��	;-� ��� ��॥

prān. adih. kathito mūrtah.
tryut.yādyo a.mūrta saṁjñakah. |

s.ad. abhih. prān. aih. vinād̄ii
syāttats.as. t.yā nād. ikā smr. tā ||

That is, (the time) that begins with respirations (prāna) is real and
that which begins with atoms is called unreal or unembodied. Six
respirations (prāna) make a vinād. ī and sixty of these a nād. ī.
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Thus, according to modern the Sūrya-Siddhānta, we have the following table
of the divisions of sidereal time:

6 respirations = 1 vinād. ī ,
60 vinād. īs = 1 nad̄i.

Referring to the Purānic divisions of a day, Burgess [8, p. 6], in his commentary
on the Sūrya-Siddhānta, has given the following divisions of a day (ahorātra):

15 twinklings (nimesha) = 1 bit (kāshthā),
30 bits = 1 minute (kalā),

30 minutes = 1 hour (muhūrta),
30 hour = 1 day.

Here, of course, 1 hour = 1 muhūrta = 48 minutes of modern time, which
entails that 1 day = 1,440 minutes.

Shukla [27, p. 2] has pointed out that the following verse on divisions of
time is given in the form of a commentary on the Sūrya-Siddhānta edited by
Rāmakr.s.n. a Ārādhya (1472 c.e.):

�&^4 �7 H��J
 �� G���
�8 T�,��� 	A/����।

�HB�� 8� i)�� \��
�	tt_����� 	���5-"॥

	���5<� � 	���)��
-�8� $� ��0���� �"।

�� $� ��0��H��� -�8"
pr�4� F	/,&���॥

tiiks.n. a sūcyābja pus.pasya
dala bedhastrut.irbhavate |

tacchataṁ lava ityuktaṁ
tattriṁśastu nimes.akah. ||

nimes.aisapta viṁśatyā
kālo gurvaks.arastu sah. |

daśa gurvaks.aroccāra kālah.
prān. o a. bhidhīyate ||

That is, the time taken by a sharp needle in piercing a lotus petal
is called a “truti,” hundred truties form a “lava,” and thirty lavas
are equal to a “nimes.a.” Twenty-seven nimes.as are equal to the
time taken in pronouncing a “gurvaks.ara” (long syllable), and then
guruvaks.aras form the time equivalent to one “prān. a.”
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In other words, the table of the above divisions may be expressed in the
following form:

1 truti = Time taken by a sharp needle to pierce a lotus petal,
100 truties = 1 lava, 30 lavas = 1 nimes.a (twinkling),
27 nimes.as = 1 guruvaks.ara, and

10 guruvaks.aras = 1 prān. a (respiration).

The modern Sūrya-Siddhānta provides the division of a month in the following
couplet [27, I, 12]:

��;& 5GA+ �� �� ��0��+
a
����� pr-&	����+ ।

�	tt_���� /��'���"
����� F -����<" ��� �"॥

nād. ī s.as.t.yā tu nāks.atram
ahorātraṁ prakīrtitam |

tat̄riṁśatā bhavenmāsah.
sāvano a. rkodayaih. smr. tah. ||

That is, sixty nād. īs make a (sidereal) ahorātra (day + night). A month
is composed of thirty such sidereal days and has as many (thirty)
sunrises.

Thus, we have

60 nād. īs = 1 day (civil),
30 days = 1 month,

and the sun rises thirty times in a month (civil).
In the stanza given below, the Sūrya-Siddhānta makes a distinction be-

tween a lunar month and a solar month [27, I, 13]:

e�'��	��	�	/" ��+ �)����')�� �%� uH���।
���<dv����	/��5� 	�M�� ��
 uH���॥

aindavastithibhih. tadvatsaṁkrāntyaa saura ucyate |
māsairdvādaśabhirvas. aṁ divyaṁ tadaha ucyate ||

That is, a lunar month is composed of as many (thirty) lunar days
(tithis), and a solar month is ascertained by the entrance of the sun
into a sign of the zodiac, while a year is made of twelve months.
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The above divisions of a year were in common use during the time of the
Vedāṅga Jyotis.a, which describes them in much detail, as given in Sect. 2.
This clearly demonstrates that the Vedāṅga Jyotis.a provided a foundation
for the complex structure of the Sūrya-Siddhānta (ancient and modern both).
In the Sūrya-Siddhānta too, as in the Vedāṅga Jyoyis.a, there are the following
three types of days:

1. Sāvan or civil day, from sunrise to the next sunrise as described in the
verse [27, I, 36]

u����� ��� /���" /7 	� ���� �����"।
udayādudayaṁ bhānoh. bhuumi sāvana vāsarāh. |

That is, the terrestrial civil days are counted from one sunrise to the next
sunrise.

2. Sidereal day = 60 nād. īs = the time for one rotation of the earth on its
axis.
The Sūrya-Siddhānta provides a method to calculate the length of a side-
real day (cf. [8, pp. 28–29]).

3. Lunar day = time between one new moon and the next divided by thirty
as mentioned above.

It may be recalled here again that during the age of the Vedas and the Vedāṅga
Jyotis.a a yuga was composed of five samvatsaras (years), but, following
the Purānic traditions, the Sūrya-Siddhānta has developed the concept of
Caturyuga (Quadruple Age) consisting of 4,320,000 solar years. This enormous
length of time is divided into four yugas, namely Kr.ta yuga (Golden Age),
Tretā yuga (Silver Age), Dvāpara yuga (Bronze Age), and Kali yuga (Iron
Age) in the ratio of 4:3:2:1 respectively. The present age of Caturyuga is Kali
yuga with its total length of 4,320,00 solar years, which, according to Hindu
reckoning, began in the year 3102 b.c.e.

According to Sūrya-Siddhānta, 71 Caturyuga plus at its end a Sandhi Kāla
(twilight time) is, equivalent to a Kr.ta yuga “manvantara,” after which there
is a deluge (great flood) as described in the following stanza [27, I, 18]:

�� $���� � �	���<-�
�'�'��	�
�H���।

-� ��J� ��`�� ����'��
�	'," pr�\�� 
8 8�"॥

yugānaaṁ saptatissaikā
manvantaramihocyate |

kr. tābda saṁkhyā tasyānte
sandhih. prokto jalaplavah. ||
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That is, seventy-one yugas form one manvantara (patriarchate), and
at its end is a sandhikāla (twilight), equivalent to a Kr.tayuga, con-
sisting of a deluge (great flood).

The next verse provides the length of time to form a kalpa [27, I, 19]:

��',���� ���"
-b�� j���" ��� ���।

-� � pr��4" -b���%
�	'," �'��� ��� ��"॥

sasandhayaste manavah.
kalpe jñeyāh. caturdaśa|

kr. ta pramān. ah. kalpādau
sandhih. pancadaśa smr.tāh. ||

That is, a kalpa consists of fourteen manavantaras with their respec-
tive twilights and at the beginning of the kalpa there is a fifteenth
dawn equal to the length of a Krtayuga (Golden Age).

It is interesting to mention here that Burgess [8, p. 11] considers a kalpa equal
to an eon in English, which is not appropriate in this situation, because kalpa
is properly measured in solar years, while an eon is a long period of time that
cannot be measured.

The Sūrya-Siddhānta further describes the length of time that constitutes
a day of Brahma, the creator, as in the following couplet [27, I, 20]:

i)�� �� $ �
sr�4
/7 � ��
�� -��-"।

-b�� TU�hm�
" pr�\��
����& ��� ����&॥

ityaṁ yuga sahasren. a
bhūta saṁhāra kārakah. |

kalpo brāhmamahah. proktaṁ
śarvarī tasya tāvatī ||

That is: one thousand kalpas form a day of Brahmā, after which all
of creation is destroyed. A night of Brahmā is also of the same length
of time.

About the longevity of Brahmā, the Sūrya-Siddhānta provides the following
details (cf. [27, I, 21] and [8, p. 12]):

������ !��� ���
��� F
���� ��`���।
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a��� 5�F,� 	��� ���
��5�)-b�� F��� 	��"॥

paramāyuśśataṁ tasya
tayā a. horātra saṁkhyayā |

āyus.oa. rdha mitaṁ tasya
śes. ātkalpo a. yamā dimah. ||

That is, his (Brahmā’s) extreme age is a hundred years (i.e. 360 days
and 360 nights of Brahmā). One half of his life has elapsed and of the
remainder this is the first kalpa.

Burgess (loc. cit.) has calculated the length of Brahmā’s life as
311,040,000,000,000 solar years. Bewildered by the reckoning of these long
periods of time, Burgess observes [8, p. 11]:

Vast as this period is, however, it is far from satisfying the Hindu
craving after infinity.

For other details about the reckoning of time in the modern Sūrya-Siddhānta
see [8], Chap. I.

Although the Vedāṅga Jyotis.a, Arthaśāstra, Āryabhat. īya, Br.hatsamhita,
and the modern Sūrya-Siddhānta provide very minute divisions and subdivi-
sions of time, they do not provide precise methods for their measurement. In
this respect, Burgess has observed [8, pp. 6–7]:

These minute subdivisions are. . . curiously illustrative of a fundamen-
tal trait of Hindu character: a fantastic imaginativeness, which delights
itself with arbitrary theorizings, and is unrestrained by and careless
of, actual realities. Thus, having no instruments by which they could
measure even seconds with any tolerable precision, they vied with one
another in dividing the second down to the farthest conceivable limit
of minuteness.

Burgess, of course, is only partially correct, because even in those early days
Hindus had devised a number of useful instruments to measure the time for
practical purposes, which will be described in subsequent sections.

6 Measurement of Time Prior to Varah.mihira

The earliest use of water in measuring time is described in the Vedāṅga Jyotis.a,
composed by Lagadha around the year 1500 b.c.e. Although in implicit form,
the Vedāṅga Jyotis.a associates the daily increase of daytime when the sun
moves from the winter to the summer solstice with (the flow of) one prastha
of water (from a jar), as in the following verse (cf. [7, 15], and [10], pp. 216–217
for details):
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Z���� 	d���� pr��"
0��
+ ��� u��$�%।

�	04� �% 	������"
56�� 
7 )�������� ॥

gharmavr. ddhirapām. prasthah.
ks.apāhrāsa udaggatau |

daks. in. e tau viparyāsah.
s.an. muhūrtyayanenatu ||

That is, during the northward course of the sun the daily increase in
the daytime or decrease in the nighttime is equal to a prastha of water,
while during the southward course the opposite is the case. The total
increase or decrease during each such course is equal to six muhūrtas.

Since each solstice period is composed of 183 days, it implies that

6 muhūrtas = 183 prastha of water = 12 nād. īkās.

Of course, the Vedāṅga Jyotis.a does not prescribe any mechanism to mea-
sure one nād. īkā of time with the flow of 15 1

4 prastha of water from a jar. It
appears, as pointed out by Fleet (loc. cit., p. 217), that the process was “too
familiar to be mentioned.”

As described in Sect. 2(c), Kautilya has given minute divisions and sub-
divisions of time. But for practical purposes he describes a process for the
measurement of a nād. īkā (cf. [12, p. 424] and [13, p. 139]):

�)�� 	���)-8� -8�" ��	8-�
�� �4���5-�!�)���!��� �;+ $� 8�����"।

-� ?/	HB�: ��9-�+ -F ?/�� �� ��	8-�॥

catvā riṁśatkalāa kalāah. nālikā
suvarn. amās.akāścatvāraścaturad. gul āyāmāh. |

kumbhacchidramād. hakam-a. mbhaso vā naalikaa ||
That is, forty kalās form a nād. īkā, which is determined by the flow
of one ādhak of water from a jar (kumbha) through an aperture ( at
the bottom) made by a wire of four māśas of gold and four angulas
(3 inches) in length.

The above measurement of time implies that

1 nād. īkā = 1 ādhaka
= 40 kalās
= 1/4 dron. a of water.
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Fleet, referring to a Buddhist work of the first century c.e. entitled
Divyāvadān, has inferred that one nād. īkā of time was considered equal to
the flow of one dron. a of water from an aperture pierced by a wire of 4 an-
gulas length and made of one suvarna of gold. As pointed out by Fleet, this
difference between the measurement of a nād. īkā in the Arthaśāstra and the
Buddhist text is due to the size of the apertures for the flow of water. Although
the lengths of the wires in both cases are the same, i.e., 4 angulas, the weight
of gold prescribed in the Arthaśāstra is one-fourth that of the Divyāvadān,
because (cf. [10, p. 222]):

1 suvarn. a = 16 māsakas (in weight).

Fleet, referring to the Vāyu Purāna, has observed that according to the
contemporary Māgadha measure, 1 nād. ī is equal to the time taken for the flow
of one prastha of water through an aperture of the same size as prescribed in
the Arthaśāstra (cf. [10, p. 221]). He adds:

In any case, since 4 prastha = 1 ādhaka, this description gives a
water-clock of the same kind and size with that of Kautil̄iya. Thus,
from the Purānas also, we have

1 nād. īkā = 1 ādhaka = 1/4 dron. a of water.

But, of course, the divisions of a nād. ī into kalās are quite different in the
Arthaśāstra and the Divyāvadān. According to the Arthaśāstra:

�)��	����+ -8�" ��;&-�।

catvaariṁśat kalāah. naad. īkā |
That is, 1 nād. īkā = 40 kalās.

The Divyāvadān, on the other hand, prescribes [10, p. 218]

-8���� e-	����+ e-� ��	8-�।
kalāanām ekatriṁśad ekā nālikā|

That is, 1 nālikā (or nād. īkā) = 31 kalās.

Referring to the Vāyu Purāna, Fleet writes that according to “the Māgadh
measure” [10, p. 221]:

��	;-� ��� pr��4�� -8� �� � ��� �।
nād. ikā tuṁ pramān. ena kalāa daśa ca paṁca ca |

That is, 1 nād. īkā = 15 kalās.

These differences in the divisions of a nād. ī may be accounted due to regional
variations, while nād. ī remained a standard measure of time in ancient India.

Fleet (loc. cit., p. 228) has compared the units for weighting gold in ancient
and modern times and found that 1 suvarn. amāśaka = 5 ratis = 9 grain,
which implies that;
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1 suvarn. a = 16 suvarn. a māśakas = 144 grains.

Finally, he notes:

It hardly seems practicable to determine by calculation the respective
sizes of the holes which would be made by the two piercing-tools of
these weights and sizes. But the holes were evidently very small ones.

7 The Ambu-Yantra of Varah.mihira

In order to measure time, Varah.mihira usually recommends two instruments,
namely a gnomon (or shadow) and a yantra (water-appliance). He writes [30,
p. 12]:

�'�� �� �	�j��� 8���
B���?T� �'���	�	���।


������ � �� f9�
����GA� /����& �'O��॥

tantre suparijñaate lagne
chāyāmbuyantrasaṁvidite |

horārthe ca surūd. he
nādes. t.urbhāratī vandhyā ||

That is, the predictions of one who knows astronomy well, can
calculate the exact lagna using the gnomon instrument and the
ambu-yantra (water-appliance) and is well versed in horoscopy, will
never be fruitless.

In this section we study in some detail the ambu-yantra mentioned above.
Varah.mihira in Chap. XIV of the Panca-siddhantika, entitled “B�dy- - ����	4”
(chedyaka-yaṁtraan. i), has described in detail a number of instruments to
measure the various astronomical quantities. This chapter contains instru-
ments designed or improved by Varah.mihira himself for the development of
astronomy and the day-to-day work of the people. In the following stanza,
entitled “-�8��� - ����	4” (kaalamaana-yaṁtraan. i), he describes the basic
requirements for the construction of astronomical instruments (cf. [28], XIV,
[26], and [29, p. 274]):

$� 4�	8b����� 	/���-
	
��	� T&
�	� �������4��+ ।

�<" ]8-� -7 �� ���� -

���GA f��	4 -����	4॥
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gun. asalilpāṁśubhiryo-
jitāni bījāni sarvayaṁtrān. ām |

taih. phalake kūrma mānav -
yathes. t.a rūpān. i kāryān. i ||

That is, the seeds of all instruments (for the measurement of time) are
furnished by string, water, and sand. Using them, one may construct
instruments of any shape, such as a tortoise or a man, and mount
them on a wooden board.

Varah.mihira forbids a teacher of astronomy to disclose the secrets of these
instruments except to a devoted pupil. He writes (loc. cit.):

$� V���8�� �dy� -

	HBG���<��'� �� � 	�G�� F	�।
�� ��4� F �j���

T&
� ����
���+ ����॥
gururacapalāya dadyā-

cchis.yāyaitānya vāpya śis.yo a. pi |
putren. ā a. pyajñātaṁ

bījaṁ saṁyojayed yaṁtre ||
That is, a teacher should impart this knowledge only to a devoted
pupil, and the latter should use it properly, keeping the secrets (of
constructing these instruments) unknown even to his son.

Varah.mihira has described two types of ambu-yantras for the measurement
of time. About the first instrument, he writes (cf. [28], XIV, [30], and [29,
p. 275]):

dy� 	�	� 	�	�"�� � ����
	�GA	HB�:�4 5	GA /�$� �"।

�� ��;& ����� ��
!�����&	�" ��� ����"॥ 31॥

dyunísi vinih. sr. ta toyā
dis. t.acchidren. a s.as.t.i bhāgo yah. |

sā nād. ī svamato vā
śvāsāśītih. śataṁ puṁsah. ||31||

That is, the sixtieth part of water contained in a nychthemeron
(clepsydra), which escapes from an aperture, defines the duration of
one nād. ī, which is the same as the time taken by a man to make one
hundred eighty respirations.
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Since the duration of a nād. ī has been measured by means of the flow of
water from a kumbha or ghata (clepsydra), this unit of time, in colloquium,
was also known as “ghat.ī.” This ambu-yantra of Varah.mihira, being convenient
for the measurement of time, became immensely popular in India, so that it
was installed in almost every village inside the Śiva temples, and water used
to trinkle down over the idol. Although, nowadays, it has become a part of
the rituals, it is the ambu-yantra (or ghati-yantra) of Varah.mihira for the
measurement of time.

Varah.mihira designed another instrument, commonly known as kapālaka-
yantra, for the reckoning of time. He writes in the Paṅcasiddhāntika
[28, XIV, 32]:

-� ?/�,��-��� ���U� ���� -��X �7 8� 	B�:�
��HB� ���� -� 6;� '���� �	���+ �7 4�� ��;& ����+ ।

�7 8�b�)��dv�,� �� 5	GA������ �
+ �� ��C��
�4��" 5	GA����" !8�-� �tt�+ 5GAg� �� �� ����+ ॥ 32॥

kumbhārdhākāraṁ tāmraṁ pātraṁ kāryaṁ mūle chidraṁ
svacche toye kun. d. e nyastaṁ tasmin pūrn. e nād. ī syāt |

mūlālpatvādvedho vā s.as. t.iryojyā cahnā rātryā
varn. āah. s.as. t.irvakrāh. śloko yattat s.as.t.yā vā sā syāt ||32||

That is, construct a copper vessel shaped like a hemispherical jar and
pierce a hole at its bottom. Place it in a basin filled with pure water.
When it is filled with water, a nād. ī has elapsed. The hole at the
bottom has to be made in such a way that the vessel may have sixty
immersions in one nychthemeron. Or, it is the time in which sixty
ślokas (verses), each composed of sixty long syllables, can be recited.

As pointed out by Thibaut and Dvivedi (loc. cit., p. 82):

Stanza 32 consists of 60 long syllables, thus constitutes a śloka such
as – according to Varah.mihira – may be recited in the sixtieth part of
a nād. īaka.

Varah.mihira has named the above hemispherical bowl made of copper as
“a,� -��8�” (ardha-kapālaṁ) (cf. [28, XIV, 19]), which in the modern Sūrya-
Siddhānta was called “kapālaka-yantra.”

8 The Ambu-Yantra After Varah.mihira

Br.ahmagupta made some modifications with the ambu-yantra of Varah.mihira.
In place of a kumbha, he prefers a graduated cylindrical vessel. He writes
[6, XXII, 46]:

�8-� �7 8� 	�d���+ sr� 	� Z	A-�d+ �" ��� HB_ ��"।
8J,�*+ $� 8<��� �<���	;-� 	����'� 	�	d��"॥
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nalako mūle viddhastat sruti ghat.ikoddhtah. samucchrāyah. |
labdhāńgulaistu tairnād. ikā kriyāyantra siddhiratah. ||

That is, a cylinder with a hole at its bottom is taken. Its height is
divided into ghatikās during which water flows out. A nād. īkā (i.e.
ghatikā) is graduated into angulas, so that the instrument is properly
set up.

Br.ahmagupta has closely followed Varah.mihira in describing a “kapālaka-
yantra” (hemispherical water-clock). He writes [6, XXII, 41]:

Z	A-� -8��,��-� 	� ���U����� �8� F �� �� 	HB�: �+ ।
�O�� ��
8��
� 5GA+ �� dy� 	��� ��� /�	�॥

ghat.ikā kalāśārdhākr. ti tāmraṁpātraṁ tale a. pr. thucchidram |
madhye tajjalamajjana s.as.t.ya. dyunísaṁ yathā bhavati ||

That is: a ghat.ikā (yantra) is a hemispherical vessel made of copper
with a small aperture at the bottom so that it sinks into the water
sixty times in one day and night.

In the modern Sūrya-Siddhānta too we find a description of a ghat. ī-yantra
of the same type as designed by Varah.mihira (cf. [27], 23). Bhāskarācarya II,
who belonged to “Varah.mihira Gurukula,” has described around the year 1150
c.e., a “ghat.i-yantra” in exactly the same way as designed by Varah.mihira in
the Pancasiddhāntikā (XIV, [31]). He writes [5, Golādhyāya, XI, 8]:

ZA�8 f�� Z	A-� ��	�U �8� �� �� 	HB�: �।
dy� 	�	� 	���
�	�)�� /\�� dy� 	�	�� ZA& ����+ ॥

ghat.adala rūpā ghat.ikā tāmri tale pr. thucchidrā |
dyunísi nimajjanamityā bhaktaṁ dyunísiṁ ghat.ī mānam ||

That is, a ghatikā is a hemispherical vessel made of copper with a
hole at its bottom, so that the duration of a day and night is divided
by the number of times it sinks into water, which is the measure of a
ghat. ī (nād. ī = 24 minutes).

The ghati-yantras, as designed by Varah.amihir, were in common use for more
than 600 years, and a number of renowned astronomers, including Lalla and
Śr̄ipati have described them in detail.

As noted by Ôhashi [18, p. 277]:

The clepsydra (ambu-yantra) was probably the most popular astro-
nomical instrument in India until recently, and there are several his-
torical records of this instrument.

For details of these historical records, see Fleet [10], and [18, pp. 276–279].
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9 Measurement of Time by Śanku-Yantra

As described in Sect. 1, the earliest mention of a unit of time is found in
the Atharvaveda, which asserts that the sun divides a day into thirty parts.
It seems that it was the initial attempt to ascertain time by observing the
position of the sun in the sky that led to the use of the shadow of the sun
for more accurate measurements. The thirtieth part of a day, as mentioned
above, was called a “nād. ī” or “nād. īkā,” which has been described in detail in
the R. gveda and the Yajurveda recensions of the Vedāṅga Jyotis.a.

The earliest use of the shadow of a gnomon at any time of the day to
calculate the lagna (i.e., ecliptic point, which is on the eastern horizon at any
given time) and vice versa is found in the Vasistha Siddhānta as described
by Varah.mihira in the Paṅcasiddhāntikā, Chap. II, 11–13. Vāsis. t.ha-Siddhānta
also provides rules for the calculation for midday shadows from the longitude
of the sun. For details of these calculations see [22]. This ensures that the
construction of śanku-yantras and their use for the measurement of time,
longitude of the sun, and determination of the lagna at any time from a
gnomon’s shadow was fairly well known during the time of the composition
of Vāsis.t.ha-Siddhānta (cf. [9, p. 233] and [19, 21] for details about the time
of Vāsis. t.ha-Siddhānta).

The use of the shadow of a gnomon for the measurement of time is found in
the Arthaśāstra, composed by Kautilyā around the year 317 b.c.e. He writes
(cf. [12, p. 425] and [13, p. 140]):

B������GA �%VG��!A��� /�$ -B��" ,
5A �%VG��� ��� ��� /�$" ,

	��%VG���GA /�$" ,
	dv�%VG��� 5;+ /�$" ,

�%VG��� ��� /��$" ,
aGA�*+ $� 8���� C���� /�$�" ,

��� �*+ $� 8���� ���FGA/�$�" ,
aHB��� �O��'
 i	�।

chāyāyāmas. t.a paurus.yamaś.t. ādaśa bhāga-chedah. ,
s.at. paurus.yāṁ caturdaśa bhāgah. ,

tripaurus.yāmas. t.a bhāgah. ,
dvipaurus.yāṁ s.ad. bhāgah. ,

paurus.yāṁ caturbhāgah. ,
as. t.āńgulāyāṁ tryodaśa bhāgāh. ,

caturańgulāyāṁ trayoa. s.t. a. bhāgāh. ,
acchāyo madhyānha iti |

That is, when the shadow (of the gnomon) is eight paurusas, one-eighteenth
part of the day is passed; when six paurusas, one-fourteenth part (is past);
when three paurusas, one-eighth part; when two paurusas, one-sixth part;
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when one paurusas, one-fourth part; when eight angulas, three-tenths part
(is past); when four angulas, three-eighths part; and when there is no
shadow, it is midday. (Translation by Kangle [13, p. 140]).

Kautilya adds [12, p. 425]:

����� tt� 	���� ��5���� 	�,��+ ।

parāavr. tte divase śes.amevaṁ vidhāt |
That is, in the afternoon the above-mentioned rules work in the same way.

Varah.mihira, in Paṅcasiddhāntikā, has given an elegant method for the cal-
culation of time from the gnomon’s shadow. He writes (cf. [28], IV, 48; [29],
p. 121):

5;+ h�� ��dy� 	���
	B'�� �dv���<	����O��'
<"।

B���*+ $8<$������
��;+ �" pr�-+ �� !I�" ��5�"॥

s.ad. ghne svadyumite
chinne sadvādaśairvimādhyānhaih. |

chāyāńgalairgatāstā
nād. yah. prāk pr. śt.hatah. śes. āh. ||

That is, multiply the measure of daytime in nād. īs by 6, and divide
by the angulis (length) of the shadow, after having added 12 and
subtracted the length of the midday shadow of the date. The results
are the nād. īkās from sunrise in the forenoon and the remaining time
to sunset, in the afternoon.

The above rule can be expressed in the following mathematical form:

n =
6 × d

12 + s + s0
,

where n = nād. īs, d = duration of the day, 12 = length of the gnomon in
angulas, s = length of the shadow (in angulas), and s0 = length of the midday
shadow.

In the following couplet, Varah.mihira provides a rule to calculate the
length of the shadow, when the time is known. He writes (cf. [28], IV, 49,
and [29], p. 122):

B��� FF-&� ��;&	/
	������� 5;h��� d��tt�।

8J,� dv��� 
&��
�O��'
HB���� �	
��+ ॥
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chāyā a. a. rkī nād. ībhi
rdinamānaṁ s.ad. aghnamuddharettatra |

labdhaṁ dvādaśa hīnaṁ
madhyānhacchāyayā sahitam ||

That is, multiply the duration of the day by six and divide it by the
given time in nād. īkās ; subtract 12 from the quotient and add the
midday shadow. The result is the gnomon’s shadow due to the sun at
the given time.

Abraham [1, p. 215] has expressed the above rules in the following form:

d

2t
=

s − s0

g
+ 1,

where t/d is the fraction of daytime, s is the shadow of the gnomon of length
g, and s0 is the length of the noon shadow.

About the increase and decrease of a day when the sun moves toward the
summer and winter solstices respectively, Kautilya writes (cf. [12, p. 425] and
[13, p. 140]):

������� 
7 ��� 	���� ��	�!�
�<�� ��!��� 
� � ��	� /��"॥ 37॥

��" ��� 	�	/���
7 tt<��'���"
56���� �,��� hr��� ��	�॥ 38॥

paṁcadaśamuhūrto divaso rātrísca
caitre cāśvayuje ca māsi bhavatah. ||

tatah. paraṁ tribhirmuhūrttairanyatarah.
s.an. māsaṁ vardhate hrasate ceti ||

That is: the day and night of fifteen muhūrtas occur in the months
of Caitra and Āśvayuja (Āsvin). After this the former increases and
(then) decreases by three muhūrtas during a period of six months,
and in the same way the latter too.

Abraham, reading the above lines, writes [1, p. 216]:

The rule for the uniform variation of the length of daylight 12–18
muhūrtas, implies a latitude of about 35◦, and so seems to have been
uncritically borrowed from Babylonia.

The claim of Abraham that the method of the construction of the śanku-
yantra was borrowed from “Babylonia” seems to be totally untenable. Lagadh,
in fact, in Vedāṅga Jyotis.a, has written about this variation of six muhūrtas.
But he was a Kashmiri Brāhman.a. For details see Sect. 2.

Br.ahmgupta, one of the top-ranking mathematicians of “Varah.mihira
Gurukula,” has given the following rule for the calculation of time by
śanku-yantra (cf. [6], XII, 52):
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B����� �<-h�� dy� �8�
pr�$+ ����dy��$� ��5�+ ।

	��$� ��5���h�� dy� �8�
B��� �� M��-�+ ॥

chāyānar saikahr. taṁ dyudalaṁ
prāg parayordyugata śes.am |

dinagata śes. āṁśahr. taṁ dyudalaṁ
chāyā nara vyekam ||

That is, the half-day divided by the ratio of the shadow with the
(length of the) gnomon and one added to it provides the elapsed or
remaining part of the day in the forenoon or afternoon.

Conversely, the length of the shadow is obtained by dividing the half-day by
the time (given), subtracting 1, and multiplying the result by the length of the
gnomon. In concrete mathematical terms, the above rules can be expressed in
the forms

t =
d/2

(s/g) + 1
and s =

(
d/2
t

− 1
)
× g.

Of course, these formulas can be easily derived from the corresponding
results of Varah.mihira. For details see [6, pp. 997–998].

Mahāv̄irācārya also, in his famous work Ganitasara-Samgraha, has used
śanku-yantra for the measurement of time (cf. [17]; IX, 15–16, and [18, p. 190]
for details). It may be mentioned here that Varah.mihira and Br.ahmagupta
had developed some more sophisticated methods to ascertain exact time. For
details see [18, pp. 190–194].

During the first quarter of the eighteenth century, Savai Rājā Jai Singh
established five observatories for research work in astronomy. Śanku-yantras
were installed in these observatories for the measurement of time. One such
śanku-yantra established by Jaisingh at the observatory in Ujjain is still in
good condition and visitors can record time from it.
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15. Lagadha: Vedāṅga Jyotis.a. Edited with Commentary by Sudhakar Dvivedi and
Murlidhar Jha, Medical Hall Press, Banaras, India (1908).
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Lucknow (India), Vol. 54, No. 1, 1–12 (2001).

20. Pandey, G. S.: Calendar Systems of Ancient India. Journal of Natural and Phys-
ical Sciences, Vol. 18, No. 1, 11–30 (2004).

21. Pandey, G. S.: Foundations of Golden Age of Mathematics in India (Under
publication).

22. Pandey, G. S.: Algebraic Models in Vasis.t.ha Siddhānta. Ganita (Under
publication).

Pure Mathematical Physics



110 G.S. Pandey
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of Aesthetics
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1 Introduction

In 2002, the celebrated Philippine composer José Maceda [11] organized a
symposium on “A Search in Asia for a New Theory of Music” in Manila. His
objective was to explore Asian mathematical sources that may be helpful in
providing a direction to world music everywhere. The papers at the sympo-
sium have since appeared as a book [1]. At this meeting, Maceda had many
conversations with me regarding what he called the “aesthetics of Asian court
musics which seek permanence with little change.” I told Maceda that I con-
sidered the dhvani approach to aesthetics particularly insightful, since it made
the audience central to the process of illuminating the essential sentiment be-
hind the artistic creation (e.g., [5]). According to this view the permanence
being sought is the “universal” that can only be approached and never quite
reached by the diverse paths that represent different cultural experiences.

Maceda appreciated the role that physiological geometry plays in percep-
tion and aesthetics, but he was emphatic that there was a cultural compo-
nent to it and that there could be no unique canon of beauty in art. I take
this thought as the starting point of my discussion of the golden proportion
(Φ = 1.618 . . .), defined by

Φ =
1

Φ − 1
,

which some theorists have claimed is fundamental to aesthetics. The concep-
tion of it as a pleasing proportion arose in the late 1800s, and there are no
written texts that support such usage in the ancient world. Indeed, many
non-Western cultures either do not speak of a unique ideal or consider other
ratios as ideal, such as

√
2 of Islamic architecture.
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Zeising [19] appears to have been the first to propose the romantic idea that
in the golden ratio “is contained the fundamental principle of all formation
striving to beauty and totality in the realm of nature and in the field of the
pictorial arts.” Two prominent twentieth century architects, Ernst Neufert
and Le Corbusier, used this ratio deliberately in their designs. More recently,
many industrial designs (such as the dimensions of the ubiquitous credit card)
have been based on it. Avant-garde musicians such as Debussy, Bartok, and
Xenakis have composed melodic lines with intervals chosen according to this
ratio. Salvador Dali used this proportion in some canvases. Cartwright et al.
[3] argue its importance in music.

But such usage does not make it an aesthetic law, and Livio [9] debunks
this pretension effectively, showing that the research on which this claim has
been made is ambiguous at best. I agree with Livio’s warning that:

Literature is bursting with false claims and misconceptions about the ap-
pearance of the Golden Ratio in the arts (e.g., in the works of Giotto, Seurat,
Mondrian). The history of art has nevertheless shown that artists who have
produced works of truly lasting value are precisely those who have departed
from any formal canon for aesthetics. In spite of the Golden Ratio’s truly
amazing mathematical properties, and its propensity to pop up where least
expected in natural phenomena, I believe that we should abandon its appli-
cation as some sort of universal standard for “beauty,” either in the human
face or in the arts [10].

In this note I first present the background to the golden mean and its
relationship to Mount Meru (Meru-Prastāra) of Piṅgala (c. 200 b.c.e. but
perhaps 450 b.c.e. if the many textual notices about him being the younger
brother of the great grammarian Pān. ini are right) and its subsequent expo-
sition by other mathematicians. The term “golden section” (goldene schnitt)
seems to have been used first by Martin Ohm in the 1835 edition of the text-
book Die Reine Elementar-Mathematik. The first known use of this term in
English is in James Sulley’s 1875 article on aesthetics in the ninth edition of
the Encyclopaedia Britannica.

Next, I present multiplicative variants of Mount Meru and the Fibonacci
sequence that may explain why the octave of Indian music has 22 micronotes
(śruti), a question that interested José Maceda. I also discuss other sequences
related to Mount Meru, including those that were described by the musicolo-
gist and musical-scale theorist, Ervin Wilson. I conclude with a discussion of
the question of aesthetic universals that was raised by José Maceda.

2 Historical Background

As historical background, one must go to Piṅgala’s Chandah. śāstra 8.32–8.33
(see, e.g., [16],[14],[15],[13]), in which, while classifying poetic meters of long
and short syllables, Piṅgala presents Mount Meru (Meru-Prastāra, “Steps of
Mount Meru,” and Meru-Khan. d. a, “Portion of Mount Meru” by Bhāskara II in
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his Līlāvatī written in 1150), which is also known as Pascal’s triangle (Fig. 1).
The shallow diagonals of Mount Meru sum to the Fibonacci series, whose limit-
ing ratio is the golden mean (Fig. 2). Piṅgala’s cryptic rules were explained by
later commentators such as Kedāra (seventh century) and Halāyudha (tenth
century).

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Fig. 1. Mount Meru

The Fibonacci numbers are described by several Indian mathematicians
in the centuries following Piṅgala as being produced by the rule

F (n + 1) = F (n) + F (n − 1).

Virahānka (seventh century) explicitly gives the sequence 3, 5, 8, 13, 21. Fur-
ther explanations regarding the numbers were presented by Gopāla (c. 1135
c.e.) and the polymath Hemacandra Sūr̄i (1089–1172). If we assume that
long syllables take twice as long to say as short ones, Hemachandra (to use
the more common spelling of his name) was dealing with the following pro-
blem: “If each line takes the same amount of time, what combination of short

1
1

2
3

5
8

3

4

13

14

151010

1615201561

5

6

1

1

1

3

1

1

21

11

1

Fig. 2. Fibonacci series from Mount Meru
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(S) and long (L) syllables can it have?” The general answer is that a line that
takes n time units can be formed in F (n) ways. This was explicitly stated by
Hemachandra in about 1150 c.e.

In Europe, Fibonacci’s Liber Abaci in 1202 describes these numbers; the
book was meant to introduce the Indian number system and its mathematics,
which he had learned in North Africa from Arab teachers while a young man
growing up there. Fibonacci speaks of his education in North Africa thus:

My father, who had been appointed by his country as public notary in the
customs at Bugia acting for the Pisan merchants going there, summoned
me to him while I was still a child, and having an eye to usefulness and
future convenience, desired me to stay there and receive instruction in the
school of accounting. There, when I had been introduced to the art of the
Indians’ nine symbols through remarkable teaching, knowledge of the art
very soon pleased me above all else and I came to understand it.

It has been suggested that the name “Gopāla-Hemachandra numbers” be
used for the general sequence

a, b, a + b, a + 2b, 2a + 3b, 3a + 5b, . . .

for any pair a, b, which for the case a = 1, b = 1 represents the Fibonacci
numbers. This would then include the Lucas series, for which a = 2 and b = 1.
It would also include other series such as the one for which a = 1 and b = 21,
which generates the numbers

1, 21, 22, 43, 65, 108, . . . .

Nārāyan.a Pan.d. ita’s Gan. ita Kaumudi (1356) studies additive sequences in
which each term is the sum of the previous q terms. He poses the problem
thus:

A cow gives birth to a calf every year. The calves become young and they
begin giving birth to calves when they are three years old. Tell me, O learned
man, the number of progeny produced during twenty years by one cow. (See
[14],[15] for details).

Mount Meru was also known in other countries. The Chinese call it “Yang
Hui’s triangle” after Yang Hui (c. 1238–1298), and the Italians know it as
“Tartaglia’s triangle,” after the Italian algebraist Tartaglia, born Niccolo
Fontana (1499–1557), who lived a century before Pascal. In western Euro-
pean mathematical literature, it is called Pascal’s triangle after the Traité du
triangle arithmétique (1655), by Blaise Pascal, in which several results then
known about the triangle were used to solve problems in probability theory.
Interesting historical anecdotes regarding the combinatoric aspects of these
numbers are given in Sect. 7.2.1.7 of the classic The Art of Computer Pro-
gramming by Knuth [8].

Here we use the name Mount Meru, since it has also had fairly wide cur-
rency in English-language literature (see, e.g., [12]), and because it was used by
Ervin Wilson, whose work will be discussed here. Wilson describes recurrence
sequences that he calls Meru 1 through 9.
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3 A Multiplicative Mount Meru and a Multiplicative
Sequence of Notes

The problem of why Indian musicologists speak of a sequence of 3, 7, and 22
notes has been of long-standing interest (see, e.g., [4], [6]). Although Clough
et al. [4] present it as the problem of the passage from a chromatic universe of
22 divisions to a “diatonic” set of seven degrees, there is no textual evidence in
support of a prior conception of 22 micronotes. For example, Bharata Muni’s
Nāt.ya Śāstra speaks both of the 7 and the 22 divisions.

1

1 1

1 2 1

1 3 3 1

1 4 10 4 1

1 5 41 41 5 1

1 6 206 1682 206 6 1

Fig. 3. A multiplicative Mount Meru

We propose that a combinatoric consideration may have been behind
the choice. Given that the study of poetic meters was an important part
of education at that time, it is likely that variants of Mount Meru were exam-
ined. An interesting variant on the standard Mount Meru is a multiplicative
Meru in which each descendent number is a product of the numbers above it
plus one, with the further condition that when the multiplicands are both 0,
the product remains 0. One can see in Fig. 3 that all other numbers are 0’s,
and therefore the product at the edges is 0 × 1 + 1 = 1.

An interesting sequence emerging from a similar multiplicative logic is

M(n + 1) = M(n) × M(n − 1) + 1,

which gives us

0, 1, 1, 2, 3, 7, 22, 155, 3411, 528706, . . . .

We propose that the occurrence of the numbers 3, 7, and 22 in this series
is not a coincidence and the above construction was behind the identification
of the 22 micronotes in the Indian theory of music. The original number is
taken to be three basic notes that become the standard seven notes and the 22
micronotes (śruti). Although there is no way to confirm that this was indeed
the case, it appears plausible.
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4 General Recurrence Sequences

In general, we can write the sequence using the linear recurrence relation

F (n) =
K∑

i=1

a(i)F (n − i),

where a(i) values represent suitable constants. The limiting ratio, in this case,
will be a solution to the algebraic equation

xK − a(1)xK−1 − a(2)xK−2 − · · · − a(K) = 0.

It is obvious that any number of ratios can be obtained by a proper choice
of K and a(i)’s. For the case that the a(i)’s are each 1, the characteristic
equation for the ratio may be simplified to

xK+1 − 2xK + 1 = 0.

Less radical variants of Mount Meru and of Fibonacci sequences may also be
conceived. For example, Wilson’s variations of Fibonacci sequences [17], [18]
are obtained using different slopes of Mount Meru by combining two earlier
terms in the sequence. They were named by him Meru 1 through Meru 9.

5 Wilson’s Meru 1 Through Meru 9

1. Meru 1: An = An−1 +An−2 with limiting ratio 1.618033. . . (golden mean)
2. Meru 2: Bn = Bn−1 + Bn−3 with limiting ratio 1.465571. . .
3. Meru 3: Cn = Cn−2 + Cn−3 with limiting ratio 1.324717. . .
4. Meru 4: Dn = Dn−1 + Dn−4 with limiting ratio 1.380277. . .
5. Meru 5: En = En−3 + En−4 with limiting ratio 1.220744. . .
6. Meru 6: Fn = Fn−1 + Fn−5 with limiting ratio the same as Meru 3
7. Meru 7: Gn = Gn−2 + Gn−5 with limiting ratio 1.236505. . .
8. Meru 8: Hn = Hn−3 + Hn−5 with limiting ratio 1.193859. . .
9. Meru 9: In = In−4 + In−5 with limiting ratio 1.167303. . .

The explicit use of these exotic sequences to create musical scales has been
presented by the composer Burt [2]. His Wilson Installations, a set of three
live solo electronic music performances, dealt “with the notions of extended
tuning systems, the relation of tuning to timbre and spatiality of sound, and
the concentration of attention for extended time periods.”

One may also generalize the Mount Meru structure. In Fig. 4 we show a
triplicate Mount Meru, for which one of the characteristic sequences would be

Pure Mathematical Physics



The Golden Mean and the Physics of Aesthetics 117

1

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1

1 5 15 30 45 51 45 30 15 5 1

Fig. 4. A triplicate Mount Meru

F (n + 1) = F (n) + F (n− 1) + F (n− 2), that is, 1, 1, 2, 4, 7, 13, 24, 44, 81, . . . .
Another example is the sequence 2, 2, 3, 7, 12, 22, 41, 75, 138, . . . , which gen-
erates not only 3, 7, and 22, but also 12, another characteristic number of
Indian music.

6 Structural Considerations

If a golden rectangle is drawn and a square is removed, the remaining rectangle
is also a golden rectangle (Fig. 5a). Continuing this process and drawing cir-
cular arcs yields a curve that approximates the logarithmic spiral, which is
a form found in nature (Fig. 5b). These numbers are encountered in many
plants in the arrangement of leaves around the stem, pine cones, seed head
packing, and flower petals owing to optimality conditions.

Since physical reasons underlie this occurrence of the golden mean in na-
ture, it is tempting to look at the structural basis of why it is a pleasing
proportion cognitively, although we must remember that it is not the only one.

13

a b

8 5

32

Fig. 5. The Fibonacci sequence in (a) two dimensions and (b) as a spiral

If the stimulation inside the brain corresponding to an input spreads
through a spiral function, then the pleasantness of the golden mean would
be clear. On the other hand, neurophysiological structures are not quite two-
dimensional, and therefore, there would be a component of the spiral that
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would go into the third dimension, providing a departure from the “norma-
tive” golden mean to many other similar numbers, such as Wilson’s Meru
2 through 9, or other more general numbers. Since the details of the struc-
tures are unique to the individual, there is further variability regarding what
would be optimal. Nevertheless, inanimate, living, and cognitive systems show
similar behavior, which is a consequence of pervasive recursionism [7].

7 Concluding Remarks

This note has reviewed some variants of Fibonacci sequences that are of
interest to musicologists. The Fibonacci sequence corresponds to a spread-
ing function that is two-dimensional,

x2 = x + 1,

that is, with the next step as the square of the previous one (Fig. 5). By anal-
ogy, in a purely three-dimensional spreading function, the operative formula
should be

x3 = x + 1,

which corresponds to the recurrence relation of Meru 3. This may be written,
alternatively, as the solution of the balanced-looking equation

Ψ =
1

(Ψ − 1)(Ψ + 1)
.

Since the neurophysiological cognitive structures do not have a symmetry
across all three dimensions (there is also variation across individuals), propor-
tions intermediate to the golden mean and Meru 3 (1.324717. . . ) would also
be aesthetically pleasing, especially in traditions that are contemplative, as in
Asia.

Returning to the question of aesthetic universals that Maceda posed, I
agree with him that it is most likely that they do not exist. It is cultural
authority and tradition that creates them, although they may be shaped by
“universals” associated with our cognitive systems.
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1. Buenconsejo, José S. (ed.): A Search in Asia for a New Theory of Music.
University of the Philippines, Centre for Ethnomusicology Publication, Quezon
City (2003).

Pure Mathematical Physics



The Golden Mean and the Physics of Aesthetics 119

2. Burt, Warren: Developing and Composing with Scales Based on Recurrent
Sequences. Proceedings ACMC (2002). http://www.iii.rmit.edu.au/sonology/
ACMC2002/ACMC2002 Web Proceedings/123-132 Burt.pdf

3. Cartwright, J. H., Gonzales, D. L., Pero, O. and Stanzial, D.: Aesthetics, Dy-
namics, and Musical Scales: A Golden Connection. Journal of New Music Re-
search 31, 51–68 (2002).

4. Clough, John, Douthett, Jack, Ramanathan, N., and Rowell, Lewis: Early Indian
Heptatonic Scales and Recent Diatonic Theory. Music Theory Spectrum 15, 36–
58 (1993).

5. Ingalls, Daniel, Masson, Jeffrey and Patwardhan, M. V. (tr.): The Dhvanyaloka
of Anandavardhana with the Locana of Abhinavagupta. Harvard University
Press, Cambridge (1990).

6. Kak, Subhash: Early Indian Music. In Buenconsejo (2003). http://www.ece.lsu.
edu/kak/manila.pdf

7. Kak, Subhash: Recursionism and Reality. Louisiana State University, Baton
Rouge (2004). http://www.ece.lsu.edu/kak/RReality.pdf

8. Knuth, Donald E.: The Art of Computer Programming. Addison-Wesley, Read-
ing, MA (2004).

9. Livio, Mario: The Golden Ratio: The Story of Phi. Broadway, New York (2002).
10. Livio, Mario: The Golden Ratio and Aesthetics. Plus Magazine, November

(2002).
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Piṅgala Binary Numbers
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1 Introduction

According to Sanskrit scholars, Piṅgala Nāga is supposed to be the younger
brother of the eminent grammarian Pān. ini (Upadhyaya [7]). According to
the Mīmānsaka [4], they lived in Shalatur village of Peshawar around 2850
b.c.e. Piṅgala’s Chandas Śāstram is the oldest available authoritative work
on prosody. He has referred to his predecessors in his work frequently, but
no earlier treatises dealing exclusively with Vedic or classical Sanskrit me-
ters have survived. His work deals with various aspects of prosody. Poetry
is considered the crowning glory of Sanskrit literature mainly because of its
perfect poetical structure due to the mathematics of metrics. Therefore, the
construction of a poetical verse needs an excellent knowledge of prosody. The
basic rules of Piṅgala’s Chandas Śāstram are presented only in sūtras (for-
mulas). Sūtra is a Sanskrit word and it literally means (coded or terse) for-
mula. So, it is understood only through commentaries. There are a couple
of commentaries available on Chandas Śāstram. In all that follows, we ad-
here to the most authoritative commentary by the tenth century Sanskrit
scholar and mathematician, Halāyudha Bhat.t.a (see [3]). Piṅgala used bi-
nary codes to ascertain the position of an even verse with a certain syl-
labic arrangement in the list of all possible verses with the same number
of syllables. We limit ourselves to a brief discussion on the methods of writ-
ing Piṅgala binary numbers and mapping rules between binary and decimal
numbers.

∗ Shyam Lal Singh has been a professor of mathematics and principal of the College
of Sciences and Engineering in Gurukula Kangri Vishwavidyalaya, Hardwar,
India. His areas of interest include fixed point theory and Vedic mathematics.

B.S. Yadav and M. Mohan (eds.), Ancient Indian Leaps into Mathematics, 121
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2 Fundamentals

In Sanskrit, there is no poetry without chandas or meter. To understand and
appreciate any poetical composition, a good knowledge and a feel of the meter
is essential. “The lore of the meter is the boat for those who desire to cross
the deep ocean of poetry,” says the great poet Dan. d. ī (eighth century c.e.),
in his Kāvyādarśa:

�� ��dy� ���	

��
���� ������ ���������� ।

Sā vidyā naustitīrs. ūn. āṁ gambhīraṁ kāvyasāgaram.

To express or describe any experience, feeling, emotion, or action, the
choice of the appropriate meter is of vital importance, because each meter
has its own mood, rhythm and movement.

While using a particular meter, says Kshemendra (circa 1025–1075 c.e.),
in his Suvr. ttatilaka, “One has to see the rasa, the mood, the nature of the
description and context”:

����� ����� ����� ������� �� ��� �।
�� ���
 ����� tt���� ����� �� �������
� ॥

Kāvye rasānusāren. a varn. anānugun. ena ca,
Kurvīta sarvavr. ttānāṁ viniyogaṁ vibhāgavit.

Therefore one should have knowledge of meters. Describing the importance of
meters, Bhat.t.a (see [3]) writes:

��"���� pr$����	� ������ ���	� �।
�%��&����� �
 '	� ����� �tt���(�	�
�॥

Vedānāṁ prathamāṅgasya kavīnāṁ nayanasya ca,
Piṅgalācārya sūtrasya mayāvr. ttirvidhāsyate.

This merely means: I present a commentary on the metrics, the prime limb
of the Vedas and the eyes of poets.

In Sanskrit and in Indian languages derived from Sanskrit, the meter is
determined by the arrangement of short and long syllables. The large number
of possible permutations and combinations has given rise to a large variety of
meters.

Almost all the padyakāvyas or poetical compositions in Sanskrit follow a
metrical structure. Therefore, to understand and appreciate them, a knowl-
edge of metrics or chandas is essential.

The vast body of Sanskrit literature that we possess is the legacy of the
ris. is (great scholars) both ancient and modern. It is an inexhaustible wealth
of inspiration for a student of poetic chandas.
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The study of metrics has a long tradition as an important branch of Vedic
learning. The text that deals with the rules of metrics is called Chandas
Śāstram and is one of the six Vedāṅgas, or limbs, of the Vedas. Indeed, the
chandas itself is considered to be the two legs of the Vedas by the eminent
grammarian, Pān. ini, the great mathematician and astronomer, Bhāskarācārya
(b. 1114 c.e.), and other top-ranking scholars.

2.1 Chandas or Meter

Literary compositions (kāvyas) in Sanskrit may be in the form of prose (gadya)
or in the form of verse (padya). A poetical stanza or verse in Sanskrit is called
a padya. Generally a padya or a verse contains four pādas, or quarters or
metrical lines.

Sanskrit verses are classified into groups and subgroups according to

(a) The number of syllables or syllabic instants that they contain in each
quarter, and

(b) The position or placement of short and long syllables within the verse.

These groups and subgroups are called meters.

2.2 Pāda or Quarter

All verses in Sanskrit generally contain four lines. Each line is called a pāda
(also called quarter if the verse has four metrical lines). The first two pādas
form the first half of a verse and the remaining two pādas the latter half of
the verse.

A pāda or quarter is regulated either by the number of syllables (aks.ara)
or by the number of syllabic instants (mātrās) or moras.

2.3 Aks.ara or Syllable

An aks.ara is as much of a word as can be pronounced distinctly at once or
by one effort of the voice. So a vowel with or without one or more consonant
is considered as one syllable. A syllable can be short (laghu) or long (guru),
depending on whether its vowel is short or long.

2.4 Laghu or Short Syllables

The vowels a (a), i (i), u (u), ) (r.), ll ( l. ) are short. Whenever any of
these are used in a verse separately or with one or more consonants, it will
be considered as a short syllable. For example, � (ka), �� (ki), etc. are short
syllables.

The vertical bar (। ) is used to represent a short syllable in scansion and
metrical analysis.
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2.5 Guru or Long Syllables

The vowels a� (ā), + ( ī ), , (ū), - ( r̄. ), e (e), e� (ai), a (o), a� (au) are
long. Whenever any of these is used in a verse separately or with one or more
consonants, it will be considered as long. For example, �� (kā), �� ( kī ), etc.
are long syllables.

The symbol (.) is used to represent a long syllable in scansion and metrical
analysis. A short vowel gets the practical status of long under the following
three conditions:

(a) If a vowel is followed by an anusvāra, for example, 
� (taṁ), �� (gaṁ), etc.
(b) If a vowel is followed by a visarga, for example, 
/ (tah. ), �/ (gah. ), etc.
(c) If a vowel is followed by a conjunct consonant, for example, 01( (bandha).

Notice that the short syllable ba has to be counted long, since it is followed
by 1( (ndha).

As a final remark about the counting of syllables in a meter, a short syllable
at the end of a quarter of a meter may be considered a long syllable and vice
versa according to the chanting or singing requirements of the meter.

As an illustration, we present a verse in anus.t.up meter along with its
scansion into short (। ) and long (.) syllables.

Example 2.1:

। . । . । . । .
%� ��
� ��2tt�3�� 
�
। . । . । . । .

�"�.3�� 
��456%dy� /।
। . । . । . । .
r� �
	�� �
pr������
। . । . । . । .
����0� ���8
����� ॥

Notice that nothing is lost mathematically if instead of reading the actual
verse and counting syllables, one looks at only the scansion, showing the
arrangement involving short (। ) and long (.) ones. So, from a mathematical
analysis point of view, the above scansion may be presented by the following
matrix, wherein we have not followed the modern taste of using brackets or a
similar notation.

। . । . । . । .
। . । . । . । .
। . । . । . । .
। . । . । . । .
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Indeed, an even meter may be defined as 4 × n matrix that is, a matrix
consisting of four rows and n columns, wherein each element of a row is
either । or . and all four rows have the same syllabic arrangement. (The
modern symbols for । and . are 1 and 0 respectively.) Notice that in the
above illustration, the number of elements in each row is 8, and all four rows
are identical. This motivates us to designate an even meter by an even matrix
of order 4 × n. In many cases of even meters, we may consider only one row,
since all four rows of an even meter are identical.

2.6 Mātrā or Metrical Unit

A unit of metrical quantity is called a mātrā or mora. A mora denotes the time
required to utter a short vowel. All short vowels are regarded as consisting of
one mora. All long vowels and diphthongs are regarded as consisting of two
moras.

2.7 Verse Classification

All padyas or verses in Sanskrit may be classified as either vr. tta or jāti. In all
that follows, we adhere to Piṅgala’s discussion on vr. ttas or verses with four
quarters.

A vr. tta chanda is one that is regulated by the number and positions of
syllables in each pāda or quarter. Vr.tta meters are further divided into three
categories, such as:

(a) Samavr. tta or even meters.
(b) Ardhasamavr. tta or half-even meters.
(c) Vis.amavr. tta or uneven meters.

Verses in which all (four) quarters contain an equal number of syllables
and the same syllabic arrangement is called samavr. tta or even meters. Thus if
the metrical scansion of a meter has all four rows identical then the meter is
called even. If alternate rows of the scansion are identical, then the meter
is categorized as half-even. An uneven meter is neither even nor half-even.
It is important to note that the class of even meters is contained in the class
of half-even meters (Table 1).

Note that English poetry is regulated by accent, whereas Sanskrit (and
other languages derived from Sanskrit) poetry is regulated by quantity
(m̄atra).

Apart from these eight Varn. ic Gan. as, Piṅgala uses two other gaṅas, viz.
La (&) for short (laghu) and Ga (�) for long (guru). The system consisting
of eight gaṅas, that is, Ma, Ya, Ra, Sa, Ta, Ja, Bha, Na, and the other two,
La, Ga are called the ten syllables of Piṅgala (TSP). They pervade the whole
creation of meters. The best way to remember them (and their elements) is
to read them in the following musical order:
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Table 1. The eight trisyllabic feet or gan. as

Serial Number 1 2 3 4 5 6 7 8

Name of gan.as in

Roman script Magan. a Yagan. a Ragan. a Sagan. a Tagan. a Jagan. a Bhagan. a Nagan. a

Name of gan.as in

Hindi script ��� ��� ��� ��� ��� 	�� 
�� ���
Symbols denoting

gan.as � � � । � � � । � । । � � � । । � । � । । । । ।
Symbolic initial

letters Ma � Ya � Ra � Sa � Ta � Ja 	 Bha 
 Na �

(TSP) Ya - Mā - Tā - Rā - Ja - Bhā - Na - Sa - La - Gam.
This needs a brief explanation. Suppose we wish to know Yagan. a. We

start with Y and notice that Ya is a short (। ) syllable, Mā (the next entry in
the (TSP)) is long (.) and Tā (the third entry in the system (TSP)) is also
long (.). Thus Yagan. a stands for ।... Similarly, to know Ragan. a we start
with R and notice that Rā is long (.) and the next two entries in the (TSP),
viz. Ja and Bhā, are short (। ) and long (.) respectively. So Ragan. a stands
for . । .. In order to know Sagan. a quickly, we see that Sa-La-Gam. gives
। । .. Recall that La and Ga (which is written as Gam. in (TSP)) stand for
short (। ) and long (.) respectively. Thus one can find any of the gan. as. For
an excellent discussion on the combinatoric nature of (TSP), one may refer
to Kak [2].

One of the most surprising aspects of the masterly composition of various
examples and definitions of different meters is that in many cases of Sanskrit
meters, the definition of each meter is itself composed in that particular ex-
ample of the meter (see [3], for instance, Sūtras 4.40 and 8.2 and its examples
or any other sūtra and its example).

In the next example, we consider an even meter or even matrix of order
4 × n with n = 12.

Example 2.2: Consider the following even meter or even matrix of order
4 × 12 along with its scansion:

Varn. ic Vr. itta (����� �� tt)

। । .। । . । । .। । .
9� ��� �"� �� : (�� ;�� 12 varn. as (12 ���)
�5� ���� ���� ��% (�� 12 varn. as (12 ���)
�� 0��� "��� ���; pr� 12 varn. as (12 ���)
�� � ���� ���� ��$ �0� 12 varn. as (12 ���)
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Śr̄i Rāmacaritamānasa–Laṅkākān.d. a (r� ������
���� - &4� �����<) – 110.1.
Notice that the order and number of syllables are the same in all four quarters.

This verse may be represented by the following even matrix of order 4×12
or simply by (। । . । । . । । . । । .):

। । . । । . । । . । । .
। । . । । . । । . । । .
। । . । । . । । . । । .
। । . । । . । । . । । .

Note 1: Number and arrangement of syllables in this example are the same
in all four quarters of this stanza.

Note 2: According to binary numbers, its position is 1756th in the Piṅgala
list of 4096 (= 212) meters, each consisting of 12 syllables.
We follow Piṅgala to explain it below (see Example N1).

3 Pratyayas: Methods of Cognitions

The eighth chapter of the Piṅgala Chandas Śāstram (cf. [3]) discusses six
types of pratyayas (cognitions).

pr	
�� �=> u�dd=> e�dvA��"&��B��।
��C����D�� �E� �<�
� prF���/ �
�/॥

Prastāro nas.t.a uddis.t.a ekadvyādilagakriyā,
saṅkhyānamadhvayogaśca s.ad. ete pratyayāh. matāh. .

Here we discuss only the following:

3.1 Varn. ic prastāra (expansion)
3.2 Nas.t.a
3.3 Uddis. t.a

3.1 Varn. ic Expansion

This prescribes two methods to write Piṅgala binary numbers. The first
method is the usual way of writing binary numbers, but from left to right.
The second method says:

(a) Write long (.) and short (। ) alternately in the first column.
(b) Write two longs (..) and two shorts (। । ) alternately in the second

column.
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Table 2. Varn. ic expansion (1 varn. a)/Piṅgala binary numbers

1 � 0

2 । 1

Table 3. Varn. ic expansion (2 varn. as)/Piṅgala binary numbers

1 � � 00

2 । � 10

3 � । 01

4 । । 11

Table 4. Varn. ic expansion (3 varn. as)/Piṅgala binary numbers

1 Ma � � � 000

2 Ya । � � 100

3 Ra � । � 010

4 Sa । । � 110

5 Ta � � । 001

6 Ja । � । 101

7 Bha � । । 011

8 Na । । । 111

(c) Write four longs (....) and four shorts (। । । । ) alternately in the third
column; and so on.

In conformity with modern taste, one may write 0 for . (long) and 1
for। (short). This is best illustrated through Tables 2–5 given below for 1,
2, 3, and 4 syllables.

We note that in metrical analysis, mātrās are counted from left to right.
This is the main reason that Piṅgala prescribes the generation of binary num-
bers from left to right in various metrical scansions.

3.2 Nas.t.a

This gives a method to convert a decimal number into the equivalent Piṅgala
binary number and is best described by the following example.

Example N1: Find the syllabic arrangement of the meter at the 14th
place in the list of Piṅgala expansion of even meters having five varn. as. That
is, convert 14 into a Piṅgala binary number consisting of five digits. (Mathe-
matically, we are converting 13 into a 5-digit Piṅgala binary number.)
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Table 5. Varn. ic expansion (4 varn. as)/Piṅgala binary numbers

1 � � � � 0000

2 । � � � 1000

3 � । � � 0100

4 । । � � 1100

5 �� । � 0010

6 । � । � 1010

7 � । । � 0110

8 । । । � 1110

9 � � � । 0001

10 । � � । 1001

11 � । � । 0101

12 । । � । 1101

13 � � । । 0011

14 । � । । 1011

15 � । । । 0111

16 । । । । 1111

Solution: By the formula Lardhe (&(��) (8/24, i.e., formula 24 of Chap. 8
in [3]), since 14 is even, write a short (। ). Again, since 14÷2 = 7 (odd), write
a long (.) next to the previous entry. Again 7+1

2 = 4 (even), write a short (। )
as the next entry. (Indeed, whenever we get an odd number in this process,
add 1 to make it divisible by 2.). Again 4÷ 2 = 2 (even), write a short (। ) as
the next entry.

Finally, we obtain 2÷2 = 1 (odd), place a long (.) as the next entry. This
way the final outcome is । . । । ..

Example N2: Convert 14 into Piṅgala binary numbers consisting of 5, 6,
7, and 8 bits. In view of the previous example, we have

(14)Pb(5) = । . । । . = 10110 (i)
(14)Pb(6) = । . । । . . = 101100 (ii)
(14)Pb(7) = । . । । . . . = 1011000 (iii)
(14)Pb(8) = । . । । . . . . . = 10110000 (iv)

[Here (14)Pb(n) stands for the Piṅgala binary number involving n bits
corresponding to the number 14.]

The above method is equivalent to the modern system of conversion
(given below). Further, reversing the sequence of bits in (i)–(iv), one can
easily see that the modern binary representations of the natural number 13
in 5, 6, 7, and 8 bits are 01101, 001101, 0001101, 00001101 respectively.

Subtract 1 from the decimal value and then divide the result by 2, and the
remainder is written in the ones place (in the sense of Piṅgala). The result is
again divided by 2, its remainder written in the next place, i.e., to the right of
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the previous entry. This process is repeated until the number becomes zero.
Reading the sequence of remainders from the top to the bottom gives the
corresponding Piṅgala binary number. If the count of remainders obtained
this way is less in the number of vern. as, then that many zeros should be
postfixed while reading from top to bottom. For example, let’s convert 1756
to a Piṅgala binary number. Subtracting one gives 1756− 1 = 1755.

Operation Remainder

1755 ÷ 2 = 877 1

877 ÷ 2 = 438 1

438 ÷ 2 = 219 0

219 ÷ 2 = 109 1

109 ÷ 2 = 54 1

54 ÷ 2 = 27 0

27 ÷ 2 = 13 1

13 ÷ 2 = 6 1

6 ÷ 2 = 3 0

3 ÷ 2 = 1 1

1 ÷ 2 = 0 1

Reading the sequence of remainders from top to bottom gives the Piṅgala
binary numeral 11011011011. Since the count obtained for the sequence is 11,
to represent in the 12 vern. as, place a zero (0) at the end, giving the final
result as 110110110110. So the final outcome is । । . । । . । । . । । ..

Example N3: Consider another example to convert 12 to a Piṅgala binary
number of 4 vern. as, i.e., of 4 bits. Subtracting 1 gives 12 − 1 = 11. Reading

Operation Remainder

11 ÷ 2 = 5 1

5 ÷ 2 = 2 1

2 ÷ 2 = 1 0

1 ÷ 2 = 0 1

the sequence of remainders from top to bottom gives the binary numeral 1101.
So the final outcome is । । . । .

3.3 Uddis. t.a : Conversion from a Piṅgala Binary Number
to Decimals

Method I

In the context of metrical analysis, uddis. t.a is the decimal equivalent of a
(Piṅgala) binary number. This is discussed by Piṅgala (cf. formulas 8.26 and
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Piṅgala Binary Numbers 131

8.27 in [3]). We give the literal meaning of these formulas for the sake of origi-
nal taste. In order to know the uddis. t.a, i.e., the desired number (corresponding
to a particular meter having a certain syllabic arrangement of bits in the list-
ing of meters), first write the (Piṅgala) binary number, and then proceed from
right to left. Write 2 beneath the first syllable if the same is short (। ), or 1
(i.e., 2 − 1) if the same is long (.). Next, multiply the first (numerical) entry
(viz. 2 or 1 as the case may be) by 2, and write the product beneath the next
syllable if the same is short, otherwise, subtract 1 from the product and write
the outcome beneath the second syllable as the second entry. Continue this
process until the last syllable. The final outcome is the uddis. t.a, that is, the
desired number.

Evidently, this formula gives an ingenious quick method to convert
a Piṅgala binary number into its decimal equivalent. The following
examples illustrate the method intended by the formulas.

(a) 0 0 1 1
. . । । Its place is 13th in the list of
13 7 4 2 meters with four varn. as or bits.

(b) 1 1 0 1 0
। । . । . Its place is 12th in the list of
12 6 3 2 1 meters with five varn. as or bits.

(c) 0 0 0 0 0 0 1
. . . . . . । Its place is 65th in the
65 33 17 9 5 3 2 list of meters with seven bits.

Method II

In order to convert a Piṅgala binary number into its decimal equivalent, we
write 1, 2, 4, 8, 16, 32, etc. beneath the Piṅgala binary codes, and discard the
numbers that are beneath the long ones, and add the undiscarded numbers.
The outcome plus one gives the decimal equivalent.

For example, consider a stanza (cf. Example 2.2) having 12 varn. as, the
following scheme explains the method:

1 1 0 1 1 0 1 1 0 1 1 0
। । . । । . । । . । । .
1 2 4 8 16 32 64 128 256 512 1024 2048

× × × ×
Sum of the undiscarded numbers

= 1 + 2 + 8 + 16 + 64 + 128 + 512 + 1024 = 1755.

Hence the decimal equivalent is 1755 + 1 = 1756.

Further, Piṅgala (see [3]) says that 2048 multiplied by 2, that is 212, will
be the number of all possible even matrices of order 4 × 12. The conver-
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sion rules discussed above may easily be verified for even matrices of order
4 × n, n = 1, 2, 3, 4, from Tables 2–5 given above. As regards the uddis. t.a, we
give a comparative chart of calculation by both methods. For the sake of
simplicity, consider examples (a), (b), and (c) above:

(a) 0 0 1 1
. . । ।
13 7 4 2 ⇐ Superfast method I
1 2 4 8 ⇒ Method II
× × The final answer is (4 + 8) + 1 = 13

(b) 1 1 0 1 0
। । . । .
12 6 3 2 1 ⇐ Superfast method I
1 2 4 8 16 ⇒ Method II

× × The final answer is (1+2+8)+1 = 12

(c) 0 0 0 0 0 0 1
. . . . . . ।
65 33 17 9 5 3 2 ⇐ Superfast method I
1 2 4 8 16 32 64 ⇒ Method II
× × × × × × The final answer is 64+1 = 65

We remark that Method II is available in current textbooks of computer
science, while the superfast method to find the uddis. t.a is not found in modern
mathematics and computer science. Evidently, the advantage that it has over
Method II for persons using slates or dust boards, as in classical times, for
computation, no numbers need to be stored for a final outcome.

4 Concluding Remarks

Gottfried Leibniz (1646–1716) documented fully the modern binary number
system in the eighteenth century. Leibniz’s system used 0 and 1, like the
modern binary numeral system. However, in 1854, the British mathemati-
cian George Boole published a landmark work detailing a system of logic,
now popularly called Boolean algebra. His logical system was responsible
for the development of the binary system, particularly in its implementa-
tion in electronic theory (see, for instance, Eves [1]). Post-Piṅgala works on
Chandaśāstra usually discuss the applications of Piṅgala binary numbers in
metrical analysis. Variants of Varn. ic Meru (popularly called Pascal’s triangle)
are widely discussed in relation to various aspects of vr. tta and jāti meters.
It seems that Meru and some of its variants were very well known among
the ancient prosodists, and the binary system was not very popular among
students. This assertion is based on the fact that almost every commentary
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on Piṅgala’s Chandaśāstram gives fundamental details of the binary system,
while not many details of Meru are given, presumably because the relationship
between binomial expansions and Varn. ic Meru was taught to them at school.
This view is also supported by the fact that textbooks dealing with school
mathematics used to incorporate a discussion on Meru. For example, one
may refer to the ninth-century Jain mathematician Mahāvīrācārya’s magnum
opus Gan. ita Sāra Saṅgrha (Compilation of the Essence of Mathematics) and
Bhāskarācārya’s Līlāvatī (composed in 1150 c.e.) (see [5]). As regards the
invention of binary numbers, nothing definitive can be said. We can say only
that knowledge of metrics was considered essential for the study of the Vedas.
According to Subhas Kak, extant Vedas date back (at least) to 8000 b.c.e.
(see Pearce [8]). Compositions on prosody before Piṅgala are not available.
However, it seems that Vedic and ancient prosodists had considerable knowl-
edge about computational mathematics. For a discussion on the concept of
zero in prosody, one may refer to Sarma [6]. There remains much work on the
mathematical aspect of prosody to be done.
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1 The Context of Renaissance Humanism

Western reception of ancient Indian mathematics during the nineteenth
century is very biased by the humanist tradition. Reflections and statements
of Western historians on Indian mathematics can be fully understood only if
this context is known and acknowledged.

During the Middle Ages, mathematics was hardly practised or appreciated
by the intellectual elite. The Middle Ages knew two traditions of mathematical
practice. On the one hand, there was the scholarly tradition of arithmetic the-
ory, taught at universities as part of the quadrivium. The basic text on arith-
metic, presented as one of the seven liberal arts, was Boethius’s De Institutione
Arithmetica [12]. The Boethian arithmetic strongly relies on Nichomachus of
Gerasa’s Arithmetica from the second century [29] This basically qualita-
tive arithmetic deals with properties of numbers and ratios. All ratios have
a name, and operations or propositions on ratios are expressed in a purely
rhetorical form. The qualitative aspect is well illustrated by the following
proposition from Jordanus de Nemore’s De Elementis Arithmeticae Artis (c.
1250, Book IX, Proposition LXXI; [3], p. 199):

Datis superparticularibus vel multiplicibus superparticularibus multiplices
superparticulares et superpartientes et datis superpartientibus aut multipli-
cibus superpartientibus superpartientes et multiplices superpartientes pro-
creare.

A superparticular has the form n+1
n and thus covers proportions such as

the common sesquialter (3/2) and sesquiter (4/3) proportions; a superpartient
proportion has the form m+n

n with m > 1 and includes proportions such as
8/3. The proposition describes how to create multiple superparticular pro-
portions from a given one. As may be clear from this example, treated in the
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most extensive treatise of the period, arithmetic served little practical purpose
and was not applied outside monasteries and universities. It was intended
mainly for aesthetic and intellectual pursuit. During the eleventh century,
a board game named Rhythmomachia was designed to meet these aesthetic
aspirations. Originated as the subject of a competition on the knowledge of
Boethian arithmetic among cathedral schools in Germany [1], the game was
played until the sixteenth century, when the arithmetic tradition passed into
oblivion. Despite its limited applicability, Boethian arithmetic evolved into
a specific kind of mathematics, typical for the European Middle Ages, and
left its mark on early natural philosophy. Carl Boyer’s book on the history of
calculus demonstrates how fourteenth-century thinkers such as Bradwardine
and Richard Suiseth developed ideas on continuity and acceleration within
this framework that influenced the later development of mathematics and
natural philosophy [2, Chap. 3].

A second tradition concerned arithmetical problem solving, of which
Alcuin’s Propositiones ad Acuendos Juvenes (Propositions for Sharpening
Youths) from the ninth century provides us with an extant witness. This
collection contains 53 problems, many of which are repeated over and over
in medieval and Renaissance works. Translations are quite recent. Folkerts
[11] translated Alcuin into German. Hadley provided an English translation,
annotated by Singmaster [34]. As the title suggests, the problems were to be
used for educational purposes and to be read aloud, copied, and solved by
students. Arithmetical problem-solving became much more advanced with
the introduction of Arabic algebra through the Latin translations of al-
Khwārizmī’s Algebra by Robert of Chester (c. 1145), Gerard of Cremona
(c. 1150), Guglielmo de Lunis (c. 1215). With the possible exception of Jean de
Murs’s Quadripartitum numerorum at the Sorbonne (1343, [20]), algebra was
not practiced or even spoken about at universities for the next three centuries.
However, algebra flourished and continuously developed within the vernacular
tradition of abacus schools in fourteenth and fifteenth century Italy. Algebra
was not only a foreign invention by its Arabic origin, it was also completely
foreign to the scholarly tradition.

During the fifteenth century, Italian humanists eagerly started collecting
editions of Greek mathematics. One of the most industrious was Cardinal
Bessarion, who lived in Venice. By the time of his death in 1472, he had
accumulated over 500 Greek manuscripts [32, pp. 44–46 and 90–109]. Re-
giomontanus, who had befriended Bessarion, began to study these Greek texts
around 1463, including Diophantus’s Arithmetica. He reported his find of the
six books of the Arithmetica in a letter to Giovanni Bianchini [9, pp. 256–257].
By then he was well acquainted with Arabic algebra. He owned a copy
of the manuscript on algebra by al-Khwārizmī, possibly from his own pen
(MS. Plimpton, 188). Highly receptive to influences between traditions, he
immediately conjectured a relation. In his Oratio, a series of lectures at the
University of Padua in 1464, he introduced the idea that Arabic algebra de-
scended from Diophantus’s Arithmetica [28]. This heralded the initiation of
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a myth cultivated by humanists for centuries. Diophantus, first considered to
be the source of inspiration for Arabic algebra, became the alleged origin of
European algebra. Several humanist writers, such as Ramus, chose to neglect
or reject the Arabic roots of Renaissance algebra altogether [18]. As a matter
of fact, Diophantus had almost no impact on European mathematical practice
before the late sixteenth century. Diophantus inspired authors on algebra such
as Stevin, Bombelli, and Viète, because by then symbolic algebra was well
established. By overrating the importance of Diophantus and downgrading
the achievements of Arabic algebra, humanist writers created a new mythi-
cal identity of European mathematics. Suddenly Greek mathematics became
European mathematics. However, most Greek sources were unavailable be-
fore the sixteenth century. In fact, Greek mathematics was more foreign to
the European mathematical practice than Arabic mathematics was; the lat-
ter was slowly but surely appropriated with the abacus tradition. Ironically,
the medieval qualitative arithmetic, which was a genuine European tradition,
became completely forgotten.

Only later did European historians learn about ancient Indian mathemat-
ics, and what they learned was strongly influenced by the humanist mathe-
matical tradition. We will now give a brief overview of the first assessments
of Indian algebra in the West.

2 The First Descriptions of Indian Algebra

In some sense, Wallis’s Treatise on Algebra (1685) can be considered the first
serious historical investigation of the history of algebra. John Wallis was well
informed about Arabic writings through Vossius and was one of the first to at-
tribute, correctly, the name algebra to al-jābr in Kitāb f̄i al-jābr wa’l-muqābala.
He also pointed out the mistaken origin of algebra as Geber’s name, which was
a common misconception before the seventeenth century [44, p. 5]. Unprece-
dented, Wallis casts doubts on Diophantus’s contribution to modern algebra.
He even launched the idea that Arabic algebra may have originated from India
[44, p. 4]:

However, it is not unlikely that the Arabs, who received from the Indians
the numeral figures (which the Greeks knew not), did from them also receive
the use of them, and many profound speculations concerning them, which
neither Latins nor Greeks know, till that now of late we have learned them
from thence. From the Indians also they might learn their algebra, rather
than from Diophantus.

So, while in the seventeenth century no Sanskrit mathematics had yet been
introduced into Europe, scholars by then were aware of the existence of Indian
algebra. Wallis’s view persisted in eighteenth-century historical studies, which
reiterated the influence of Indian mathematics. Pietro Cossali, who wrote an
extensive monograph on the history of algebra, concluded his discussion on al-
Khwārizmī’s Algebra with al-Khwārizmī “not having taken algebra from the

Pure Mathematical Physics



138 Albrecht Heeffer

Greeks,. . . must have either invented it himself, or taken it from the Indians.
Of the two, the second appears to me the most probable” [8, I, pp. 216–219]
Hutton, who included a long entry on algebra in his Mathematical and Philo-
sophical Dictionary, wrote [19, I, p. 66]:

But although Diophantus was the first author on algebra that we know of,
it was not from him, but from the Moors or Arabians that we received the
knowledge of algebra in Europe, as well as that of most other sciences. And
it is matter of dispute who were the first inventors of it; some ascribing the
invention to the Greeks, while others say that the Arabians had it from the
Persians, and these from the Indians.

In the early nineteenth century, the English orientalist, Henry Thomas
Colebrooke, who previously published his Sanskrit Grammar (1805), un-
dertook the task of translating three classics of Indian mathematics, the
Brahmasphuta Siddhānta of Brahmagupta (628) and the Līlāvatī and the
Bījagan. ita of Bhāskara II (1150) [7]. At once European historians had some-
thing to reflect upon. In a period when mathematics was hardly practised in
Europe and in the Islamic regions, there appeared to have existed an Indian
tradition in which algebraic problems were solved with multiple unknowns, in
which zero and negative quantities were accepted, and in which sophisticated
methods were used to solve indeterminate problems. In general, nineteenth-
century historians showed an admiration for the Hindu tradition. However,
whenever explanations were required, scholars were divided into two opposing
camps, which we could call the believers and the nonbelievers. Nonbelievers
did not grant Indian mathematicians the status of original thought. Indian
knowledge must have stemmed from the Greeks, the cradle of Western math-
ematics, or even mathematics as such. The major nonbeliever was Moritz
Cantor, who published an influential four-volume work on the history of
mathematics (1880–1908). Cantor [5, II] takes every opportunity to point out
the Greek influences on Hindu algebra. Some examples: the Indians learned
algebra through traces of algebra within Greek geometry (“Spuren griechis-
cher Algebra müssen mit griechischer Geometrie nach Indien gedrungen sein
und werden sich dort nachweisen lassen,” [5, II, p. 562]); Brahmagupta’s solu-
tion to quadratic equations has Greek origins (“So glauben wir auch deutlich
die griechische Auflösung der quadratischen Gleichung, wie Heron, wie Dio-
phant sie übte, in der mit ihr nicht bloss zufällig übereinstimmenden Regel
des Brahmagupta zu erkennen,” [5, II, p. 584]); or the Epanthema as discussed
below.

The believers were not convinced by accidental resemblances between
Greek and Hindu solution methods and did not see why Indian mathematics
could not have been an independent development. In particular, Hankel
[13, p. 204] touches the sore spot when he writes:

That humanist education’s deeply inculcated prejudice that all higher in-
tellectual culture in the Orient, in particular all science, is risen from Greek
soil and that the only mentally, truly productive people have been the
Greeks, makes it difficult for us to turn around the direction of influence for
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one instant. (Das uns durch die humanistische Erziehung tief eingeprägte
Vorurtheil, dass alle höhere geistige Cultur im Orient, insbesondere alle
Wissenschaft aus griechischem Boden entsprungen und das einzige geistig
wahrhaft productive Volk das griechische gewesen sei, kann uns zwar einen
Augenblick geneigt machen, das Verhältniss umzukehren [my translation]).

Soon after Kern [23] published the Sanskrit edition of the Āryabhat. īya
(AB), the French orientalist, Léon Rodet was the first to provide a trans-
lation in a Western language (1877, published in Rodet [30]). Rodet wrote
several articles and monographs on Indian mathematics and its relation with
earlier and later developments in the Arab and Western world, published
in the French Journal Asiatiques. He is the scholar who displays the most
balanced and subtle views on the relations between traditions. In particu-
lar, his appraisal of Hindu and Arabic algebra as two independent traditions
is still of value today (see [16] for an assessment). He certainly was a be-
liever. Concerning Āryabhat.a’s inadequate approximation of the volume of
a sphere (Prop. 7), he writes somewhat cynically that if Āryabhat.a got his
knowledge from the Greeks, then apparently he chose to ignore Archimedes
(“Mais elle a, pour l’histoire des mathématiques, d’autant plus de valeur, parce
qu’elle nous démonstre que si Āryabhat.a avait reçu quelque enseignement des
Grecs, il ignorait au moins les travaux d’Archimède,” [31, p. 409]).

George Thibaut, who translated several Sanskrit works on astronomy, such
as Varāhamihira’s Pañcasiddhāntikā (1889), also wrote an article on Indian
mathematics and astronomy in the Encylopedia of Indo-Aryan Research. Con-
cerning influences from Greek mathematics, he takes a middle position. In dis-
cussing Hindu algebra he writes that “in all these correspondences does Indian
algebra surpass Diophantus?” (“In allen diesen Beziehungen erhebt sich die
indische algebra erheblich über das von Diophant Geleistete” [38, p. 73]). As
on the origins of Indian mathematics, he points out that Indian algebra, es-
pecially indeterminate analysis, is closely intertwined with its astronomy. As
he argued on the Greek roots of Indian “scientific” astronomy, his evaluation
is that Indian mathematics is influenced by the Greeks through astronomy.
However, he adds that several arithmetical and algebraic methods are truly
Indian [38, pp. 76–78].

Despite the existence of several studies and opinions that should provide
sufficient counterbalance for Cantor’s position as a nonbeliever, his views re-
mained influential well into the twentieth century. We may say that the “hu-
manist prejudice” is still alive today. The myth that Greek mathematics is
our (Western) mathematics has become intertwined with our cultural identity
so strongly, that it becomes difficult to understand intellectual achievements
within mathematics foreign to the Greek tradition.

We will now look in detail at an example that has been one of the main
arguments for the advocates of Greek influence. The example clearly shows
how historical investigation can be misled through prejudice.
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3 A Case Study: The Bloom of Thymaridas

We have demonstrated elsewhere that if there is an influence between Indian
algebra and European arithmetic, it should be situated on the level of protoal-
gebraic solution recipes, orally disseminated through riddles and recreational
problems [15]. One interesting example in this respect is a class of determi-
nate linear problems in which the partial sums are given and the individual
quantities are unknown. We found strong similarities in the rules for solving
this type of problem both in Hindu algebra and in Renaissance arithmetic.
These rules have a special interest for our discussion, since we have both a
Greek and a Hindu tradition of their use. There has been a controversy about
the possible influence of Greek mathematics on Indian algebra, as defended
by Cantor and Kaye and disputed by Rodet. We will here shed more light on
the controversy and explain the dispute as a misunderstanding of the rule. We
will demonstrate in detail that the Greek and Indian versions are in fact two
different rules and that the alleged influence from Greece to India is therefore
highly disputable.

3.1 The Original Formulation in Hindu Sources

The first Indian source for a formulation of this rule is from Āryabhat.a I, 499,
(AB, ii, 29; [6, p. 40]) as follows:

If you know the results obtained by subtracting successively from a sum of
quantities, each one of these quantities set these results down separately.
Add them all together and divide by the number of terms less one. The
result will be the sum of all the quantities.

The rule is somewhat obscure and difficult to understand without ex-
amples, but some observations can be drawn from the formulation that are
central to our further discussion. Firstly, the rule is valid for any number of
quantities. It is not limited to two or three quantities. Secondly, the sum of
all the quantities is unknown and is provided by the rule. Furthermore, and
not evident from the rule as cited above, is that the partial sums relate to
the total of all the quantities, except one. In modern symbolism the general
structure of the problem thus is as follows:

Suppose n amounts (a1, a2, . . . , an) with unknown sum S and with the
partial sums (s1, s2, . . . , sn) are given, where si = S − ai. Then

S =
1

n − 1

n∑
i=1

si.

The rule and the problems it applies to should not be confused with a
similar problem in which the partial sums of two consecutive quantities are
given. For three numbers, the problems are evidently the same, but they
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diverge for more than three quantities. For example, for five quantities the
corresponding equations are

a1 + a2 + a3 + a4 = s1, a1 + a2 = s1,

a1 + a3 + a4 + a5 = s2, a2 + a3 = s2,

a1 + a2 + a4 + a5 = s3, and a3 + a4 = s3,

a1 + a2 + a3 + a5 = s4, a4 + a5 = s4,

a2 + a3 + a4 + a5 = s5, a5 + a1 = s5.

Let us apply the rule to a simple problem (not discussed by Āryabhat.a) that
can be formulated symbolically as

x1 + x2 = 13,

x2 + x3 = 14,

x1 + x3 = 15.

Applying Āryabhat.a’s rule, the solution would be based on the rule for deriv-
ing the sum of all three unknown quantities as follows:

x1 + x2 + x3 =
13 + 14 + 15

3 − 1
= 21.

This allows us to determine the value of the quantities by subtracting
the partial sums from the total with the solution (7, 6, 8). A commenta-
tor of the Āryabhat.iya, called Bhāskara I (written 629, not to be confused
with Bhāskara II), gives two examples of problems that can be solved with
Āryabhat.a’s rule with the partial sums (30, 36, 49, 50) and (28, 27, 26, 25,
24, 23, 21) [33, pp. 307–308].

3.2 The Derived Problem in Hindu Sources

From the ninth century we find a derived version of the previous problem
in Hindu sources. Mahāv̄ira gives an elaborate description of the rule in the
Gan. itasārasam. graha (GSS, stanzas 233–235, [26], 357–359) which we here
reproduce:

The rule for arriving at [the value of the money contents of] a purse which
[when added to what is on hand with each of certain persons] becomes a
specified multiple [of the sum of what is on hand with the others]:
The quantities obtained by adding one to [each of the specified] multiple
numbers [in the problem and then] multiplying these sums with each other,
giving up in each case the sum relating to the particular specified multiple,
are to be reduced to their lowest terms by the removal of common factors.
[These reduced quantities are then] to be added. [Thereafter] the square root
[of this resulting sum] is to be obtained, from which one is [to be subse-
quently] subtracted. Then the reduced quantities referred to above are to
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be multiplied by [this] square root as diminished by one. After this, these are
to be separately subtracted from the sum of those same reduced quantities.
Thus the moneys on hand with each [of the several persons] are arrived at.
These [quantities measuring the moneys on hand] have to be added to one
another, excluding from the addition in each case the value of the money
on the hand of one of the persons and the several sums so obtained are
to be written down separately. These are [to be respectively] multiplied by
[the specified] multiple quantities [mentioned above]; from the several prod-
ucts so obtained the [already found out] values of the moneys on hand are
[to be separately subtracted]. Then the [same] value of the money in the
purse is obtained [separately in relation to each of the several moneys on
hand].

The introductory sentence states that the rule is to be used for determining
the value of a purse. The rule is followed by a number of problems that begin
as “Four men saw on their way a purse containing money” (ibid. stanzas
245 1

2 , 367). This is the earliest instance, in our investigation of the sources,
in which the popular problem of men finding a purse is discussed. While
problems with the same structure and numerical values have been formulated
before, the context of men finding a purse seems to have originated in India
before 850 c.e. Formulations with the purse turn up in Arabic algebra with
al-Karkh̄i’s Fakhrī (c. 1050) and in the Miftāh al-mu`āmalāt of al-Tabari
(c. 1075). Fibonacci has many variations of it in the Liber Abaci (1202) and
after that it becomes the most common problem in Western arithmetic until
the later sixteenth century. For an understanding of the rule, let us look at
its application to a given problem (GSS, [26], p. 360):

Three merchants saw [dropped] on the way a purse [containing money]. One
[of them] said [to the others], “If I secure this purse, I shall become twice as
rich as both of you with your moneys on hand.” Then the second [of them]
said, “I shall become three times as rich.” Then the other, [the third], said,
“I shall become five times as rich.” What is the value of the money in the
purse, as also the money on hand [with each of the three merchants]?

We can represent the problem in symbolic equations as follows:

x + p = 2(y + z),
y + p = 3(x + z),
z + p = 5(x + y).

Let us apply the recipe of Mahāvira to this problem, step by step. By “adding
one to [each of the specified] multiple numbers”, we have 3, 4, and 6. “Multi-
plying these sums with each other” we get 72. This has to be “reduced to their
lowest terms by the removal of common factors.” This least common multiple
is 12. The reduced quantities are then 4, 3, and 2 respectively. Adding these
together gives 9. From this the square root is 3. Then the reduced quantities
“are to be multiplied by the square root as diminished by one,” which is 2.
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This leads to 8, 6, and 4. The money on hand for each of the merchants now is
the difference of these values with the sum of the reduced quantities, being 9.
The solution thus is 1, 3, and 5. The rest of the rule is an elaborate way to
derive the value of the purse. Using the values in any one of the equations
immediately leads to 15 for the value of the purse. Mahāv̄ira provides no
explanation or derivation of the rule. For a mathematical argument for the
validity of the rules see Heeffer [15].

3.3 The Problem in Greek Sources

3.3.1 The Bloom of Thymaridas

We know almost nothing about Thymaridas of Paros, but he is supposed to
have lived between 400 and 350 b.c.e. [36, pp. 385–386]). The only extant
witness is Iamblichus, in his comments on the Introduction to Arithmetic by
Nichomachus of Gerasa. The best known source for The Bloom of Thymaridas
is Heath’s classic on Greek mathematics. Heath [14, p. 94] does not formulate
the rule, he only observes that “the rule is very obscurely worded” and writes
out the equations. The text from Iamblichus was first published in Holland
with a Latin translation by Tennulius [37] from the Paris manuscript BNF
Gr. 2093. A critical edition, based on multiple manuscripts, was published
by Pistelli [27]. Nesselmann [25, p. 233] quotes the Greek text and the Latin
translation from Tennulius, who translated the method as florida sententia.
We give here our own literal translation from Pistelli [27, p. 62]:

From this we are also acquainted with the method of the Epanthema, passed
down to us by Thymaridas. Indeed, when a given quantity divides into
determined and unknown parts, and the unknown quantity is paired with
each of the others, so will the sum of these pairs, diminished by the sum
[of all the quantities] be equal to the unknown quantity in case of three
quantities. With four quantities it will be half of it, with five it will be a
third, with six, a fourth, and so on.

The rule is not as obscure as considered by Heath. Let us extract the basic
elements of the rule, and compare these with the version of Āryabhat.a:

• The rule applies to any number of quantities, as does Āryabhat.a’s.
• The sum is given in the problem. The rule is described as the division of

a known quantity in determined and undetermined parts. In Aryabhat.a’s
rule the sum is what is looked for.

• The partial sums are the sums of the pairs of the unknown part with each
of the known quantities. In Āryabhat.a’s rule the partial sums include all
the numbers except one.

In short, this rule is different from Āryabhat.a’s in two important aspects.
Its intention is to find one unknown part of a determined quantity. Āryabhat.a’s
rule is meant for finding the sum of numbers of which the partial sums of all
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minus one is given. Even in the case of three numbers, when the partial sums
are the same, the rules have different applications. To make it clear to the
modern eye, here is a symbolic version in the general case:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x + a1 + a2 + . . . + an−1 = s
x + a1 = s1

x + a2 = s2

...
x + an−1 = sn−1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

x =
1

n − 2

n−1∑
i=1

si − s

3.3.2 Diophantus

In the first book of the Arithmetica of Diophantus, we find four instances of
the problem type. Problems 16 and 17 are of the original type as covered by
Āryabhat.a’s rule. Let us first look at problem 17 with four unknown quantities.
We use Ver Eecke [43, p. 22] as the best translation of the Arithmetica:

Trouver quatre nombres qui, additionnés trois à trois, forment des
nombres proposés. Il faut toutefois que le tiers de la somme des qua-
tre nombres soit plus grand que chacun d’eux. Proposons donc que les trois
nombres, additionnés à la suite à partir du premier, forment 20 unités; que
les trois à partir du second forment 22 unités, que les trois à partir du
troisième forment 24 unités, et que les trois à partir du quatrième forment
27 unités.

In modern symbolism, the problem reads as follows:

a + b + c = 20,

b + c + d = 22,

a + c + d = 24,

a + b + d = 27.

Diophantus’s solution is not based on a protoalgebraic rule but has all the
characteristics of algebra. He uses the arithmos as an abstract quantity for
the unknown, to represent the sum of the four quantities [43, p. 22]:

Posons que la somme des quatre nombres est 1 arithme. Dès lors, si nous
retranchons les trois premiers nombres, c’est-à-dire 20 unités, de 1 arithme,
il nous restera, comme quatrième nombre, 1 arithme moins 20 unités. Pour
les mêmes raisons, le premier nombre sera 1 arithme moins 22 unités; lé
second sera 1 arithme moins 24 unités, et le troisième 1 arithme moins 27
unités. Il faut enfin que les quatre nombres additionnés deviennent égaux à
1 arithme. Mais, les quatre nombres additionnés forment 4 arithmes moins
93 unités; ce que nous égalons à 1 arithme, et l’arithme devient 31 unités.

If a + b + c + d = x, then the four numbers not included in the partial
sums are x − 20, x − 22, x − 24, and x − 27 respectively. Adding these four
together is equal to their sum or x; thus 4x − 93 = x and x = 31. This
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problem in the Arithmetica is followed by problems 18 and 19, of a related
type, but not the one covered by Mahāv̄ira’s formulation. We show here only
the symbolic translation of problem 19:

a + b + c = d + 20,

b + c + d = a + 30,

a + c + d = b + 40,

a + b + d = c + 50.

The solution is similar to the previous problem but depends on the choice of
2x for the sum of the four numbers.

3.3.3 The Extended Rule from Iamblichus

Iamblichus extends the rule of Thymaridas to another problem type that was
to become very popular during the following centuries. In modern symbolism
this amounts to the set of equations

x + p = a(y + z), (1)
y + p = b(x + z), (2)
z + p = c(x + y). (3)

Iamblichus gives two examples of the problem. The first example can be for-
mulated symbolically as follows. Nesselmann [25, pp. 234–235] gives the literal
German translation from the Greek. We will follow Nesselmann’s rather than
Heath’s reconstruction:

a + b = 2(c + d),
a + c = 3(b + d),
a + d = 4(b + c),

a + b + c + d = 5(b + c).

The problem is formulated in a way that reminds us of Diophantus: “Find
four numbers such that. . . ” Although Diophantus’s Arithmetica has no prob-
lems like this, problems 18–20 of the first book are variations on the original
Epanthema problem. Iamblichus’s own variation is in some way analogous to
the versions of the Arithmetica and might be influenced by it. However, while
Diophantus’s solution is algebraic, this one depends on a protoalgebraic rule.
The fourth expression in the problem formulation is superfluous and is rec-
ognized as such by Iamblichus, where he adds, “this follows directly from the
previous statements.” It is added to facilitate the application of the rule. The
procedure is explained by Iamblichus in three steps:
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(1) Set the sum of the four numbers equal to the number found by multiplying
the four factors together. Thus 2 . 3 . 4 . 5 = 120.
Iamblichus does not explain why this is necessary, but it can be demon-
strated in the following way: Completing the left side of the equations
(1)–(3) to the sum of the four numbers, we arrive at

x + y + z + p = (a + 1)(y + z),
x + y + z + p = (b + 1)(x + z),
x + y + z + p = (c + 1)(x + y).

Therefore, the sum of the four integers must be divisible by (a + 1),
(b + 1), and (c+1). This can be represented by means of the least common
multiple s. Now, Iamblichus does not use s but 2s for a reason that will
become apparent later. In the example, the least common multiple is 60,
therefore 2s is 120. So, let us suppose that x + y + z + p = 2s.

(2) The sum of each pair can be found by taking a
a+1 , b

b+1 , and c
c+1 from the

sum 2s respectively. This becomes apparent from:

x + p = a(y + z),
(a + 1)(x + p) = a(x + y + z + p).

The three sums (x+p), (y +p), and (z +p) in the example become 80, 90,
and 96.

(3) Only now does Iamblichus refer to the use of the Epanthema rule. Indeed,
we have the partial sums (x+p), (y+p), (z+p) and we have the total sum
2s. The Epanthema therefore determines the common part p as follows:

p =
(x + p) + (y + p) + (z + p) − 2s

2
,

or
p =

80 + 90 + 96 − 120
2

= 73,

which leads to the other values as 7, 17, and 23. The reason why Iamblichus
used 2s instead of the least common multiple s is that s would lead to
the nonintegral solution

p =
40 + 45 + 48 − 60

2
= 36

1
2
.

In summary, we discern two important factors that are relevant for the un-
derstanding of the controversy that follows.

(1) Our only source for the Epanthema is Iamblichus. There are at least
six centuries between Thymaridas and the extant witness. In the ab-
sence of any written source, we should consider Iamblichus’s discussion
of the method as a late interpretation of the Pythagorean number theory.
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The formulation of the rule with determined and unknown quantities suits
the context of third-century Greek analysis better than it would fit in
Pythagorean number mysticism.

(2) The extended problem, which has become known as the problem of men
finding a purse, is in itself quite different from the original problem to
which the Epanthema rule applies. The problem, devised by Iamblichus,
could be considered a variation like several others in the Arithmetica of
Diophantus. Iamblichus gives the rules to reduce the problem to a form
in which the Epanthema can be used. This distinction is important be-
cause many have wrongly identified the men-find-a-purse problem with
the Bloom of Thymaridas.

3.3.4 The Controversy

We now come to the discussion on the relevance of the Epanthema method
and the controversy about the influences on and from Indian mathematics.
Since there are two aspects of the discussion, we will deal with the issues
separately. Firstly, we address the historical question of the main source of
the men-find-a-purse problem. Secondly, we discuss the more philosophical
question of the relevance of the Bloom on the conceptual development of
algebra.

3.3.4.1 The Origin of Linear Problems of Men Finding a Purse

Nesselmann [25] refrains from comments on the Bloom of Thymaridas in his
Algebra of the Greeks. He treats the method with full respect for the extant
Greek text by Iamblichus. After Nesselmann, the problem was discussed, by
several scholars, in relation to Hindu algebra. Rodet [31], in his French trans-
lation of Āryabhat.a’s treatise, does not mention the Epanthema. Rodet was
no believer in the influence of Greek mathematics in Asia. We can assume
that he did not discuss the Epanthema because, in his point of view, there
simply is no relation to Āryabhat.a’s rule.

On the other hand, Cantor [5, II, p.584], after discussing Āryabhat.a’s
stanza 29, observes, “We do not fear any disagreement, if in this problem
and in the Epanthema of the Thymaridas, we recognize a relation which is
so close that a coincidence is not imaginable” (“Wir fürchten keinen Wider-
spruch, wenn wir in dieser Aufgabe und in dem Epantheme des Thymaridas
so nahe Verwandte erkenne, dass an einen Zufall nicht zu denken ist”). Citing
Cantor and Heath, Kaye [22, p. 40, note 2] writes “The examples in the text
are undoubtedly akin to the ‘Epanthema.’ ” Tropfke [41, p. 399] words it more
sharply and considers the formulation of Āryabhata’s stanza 29 “equivalent
with the Epanthema of Thymaridas” and states that the BM “contains prob-
lems of the same sort.” However, in the original edition, Tropfke [41, III, p. 42]
is more prudent: “Āryabhat.a bietet einige solcher Wortgleichungen, unter de-
nen uns eine wegen ihren Ähnlichkeit mit dem Epanthem des Thymaridas
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ausfällt.” Apparently it is Kurt Vogel, who edited the 1980 edition, who
believes in a strong connection.

All the suppositions of the Greek influence are based solely on the alleged
resemblance of the problems. As shown above, Āryabhat.a’s rule is very dif-
ferent from the Epanthema. The argument that both are equivalent is plainly
false. The suggestion that the Epanthema provides evidence of an influence
of Greek mathematics on Hindu algebra has very little substance. Instead, it
seems that the argument is biased by normative beliefs about the superiority
of Greek culture. Let us now proceed to the second question on conceptual
influences.

3.3.4.2 A Case of Pythagorean Algebra?

This single problem, which became known to us through Iamblichus, six cen-
turies after Thymaridas, has convinced many that Greek algebra originated
with the Pythagoreans. After writing out the equations, Cantor [5, I, p. 148]
concludes:

This is, as one can see, all rhetorical algebra, in which only the symbols
are missing in order to agree completely with the modern way of solv-
ing equations, and specifically the expressions of the given and unknown
quantities was rightly emphasized. (Das ist, wie man sieht, vollständig
gesprochene Algebra, welcher nur Symbole fehlen, um mit einer modernen
Gleich ungsauflösung durchaus übereinzustimmen, und insbesondere ist mit
Recht auf die beiden Kunstausdrücke der gegebene und unbekannten Grösse
aufmerksam gemacht worden.)

Heath’s interpretation is copied in many other works including Smith
[35, p. 91], Cajori [4, p. 59], van der Waerden [42, p. 116], Flegg [10, p. 205],
and Kaplan [21, p. 62]. Cajori finds in the Thymaridas “investigations of sub-
jects which are really algebraic in their nature.” Van der Waerden goes as far
as to claim that “we see from this that the Pythagoreans, like the Babylonians,
occupied themselves with the solution of systems of equations with more than
one unknown.” Instead, Klein [24, p. 36] sees in the problem an intent to “de-
termine special relations between numbers” and places it as “the counterparts
in the realm of ‘pure’ units of the computational problems proper to practical
logic.” We agree with Klein’s interpretation. Even if Iamblichus’s depiction of
the problem from Thymaridas is faithful, the six centuries separating these
two mathematicians require an interpretation that accounts for two different
contexts. Pythagoreans were concerned with the properties of numbers and
with the relations between numbers. Lacking any further evidence, we can-
not attribute an algebraic interpretation to the Pythagorean number theory.
On the other hand, in the context of the late Greek period of Diophantus
and Iamblichus, an algebraic reading is warranted. Thus, the Bloom is
an old number-theoretic problem, revived and extended in an algebraic
context.
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4 Conclusion: The Ground Was Wet Everywhere

The humanist project of reviving ancient Greek science and mathematics
played a crucial role in the creation of an identity for the European intel-
lectual tradition. While Greek mathematics was hardly known or practised
before the fifteenth century, humanist mathematicians identified themselves
with this tradition. When Regiomontanus declared that algebra was invented
by Diophantus, humanist writers rejected the Arabic roots of algebra, though
it was practised and turned into an independent tradition for two centuries in
Italian cities such as Florence and Siena. The newly-created identity of math-
ematics descending from ancient Greek thinkers blurred historical perception.
When Indian algebra and arithmetic were introduced into Europe, the lead-
ing historians of the nineteenth century could only see its alleged relation
with Greek mathematics. The Bloom of Thymaridas is an excellent illustra-
tion of distorted historical investigation. Not only was it wrongly inferred
that the Indian method for solving determined linear problems depended on
Iamblichus, historians forced a connection between third century Greek anal-
ysis and Pythagorean number theory. The origin of the algebra of Diophantus
still needs an explanation, but it is very doubtful that it is to be found in
Pythagoras.

Apparently, nineteenth century historians found it difficult to accept that
mathematics is a human intellectual activity practiced across cultures within
societies that needed and supported the achievements of mathematical prac-
tice. A true history of mathematics should take into account contributions
of all origins. Jens Høyrup, who studied the evolution and transmission of
mathematics between cultures, formulates it as follows [17, p. 98]:

Diophantos would use the rhetorical algebra, the Chinese Nine Chapters on
Arithmetic would manipulate matrices, and the Liber abbaci would find the
answer by means of proportions. We should hence not ask, as commonly
done, whether Diophantos (or the Greek arithmetical environment) was the
source of the Chinese or vice versa. There was no specific source: The ground
was wet everywhere.
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22. Kaye, George Rusby: The Bakhshāl̄i Manuscript. A Study in Mediaeval Mathe-
matics (3 parts in 2 Vols.) Vol 1: Archaeological Survey of India, Kolkata (1927);
Vol 2, Delhi (1933) (Reprint, Cosmo Publications, New Delhi, 1981).
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1 Introduction

Indian mathematical tradition is found to be as old as Indian civilization,
and some of the important mathematical concepts contributed by Indians
are found to have roots running deep into the earliest strata of Indian sci-
entific thought. Like every other science in India, mathematics too, is seen
to have grown in close connection with religion, and the pace of progress
in the discipline was in accordance with the rate at which the user of the
discoveries was refining himself. Consequently, classical literature contain-
ing well-developed systems of metaphysical, social, and religious philosophies
and arts of the ancient Indians also contains the seeds of various mathe-
matical concepts developed by them to meet their religious and other needs.
Through various casual references, some of the important mathematical con-
cepts developed and acquired through the ages are brought to us through
classical literature, and in this sense classical literature may be said to have
rendered untold service to the progress of mathematical sciences, especially
to the science of numerals. However, it was Āryabhat.a I (born 476 c.e.)
who systematized and synthesized the astronomical and mathematical knowl-
edge acquired by him through oral tradition. His two masterly treatises, viz.
the Āryabhat.asiddhānta (known only through citations in later works) and
the Āryabhat. īya may be said to have opened the doors to a scientific ap-
proach to astronomy and mathematics. Several scholars of this period of
systematization (fifth to twelfth century c.e) who contributed their invalu-
able share to the development of the twin sciences include Varāhamihira,
Bhāskara I, Brahmagupta, Haridatta, Lalla, Skandasena, Śr̄ıdhara, Mahāv̄ira,
Govindasvāmin, Śaṅkaranārāyan.a, Vat.eśvara, Pr.thūd. akasvāmin, Āryabhat.a
II, Bhat.t.otpala, Muñjāla, Śr̄ipati, Udayadivākara, Sūryadeva and Bhāskara II.

∗ V. Madhukar Mallayya’s field of research is the history of mathematics.
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After Bhāskara II, some influential scholars in various parts of the country
continued their astronomical and mathematical activities and produced some
important works. They include Thakkura Pheru (1265–1330 c.e.), of the court
of the Delhi Sultanate, who composed the Gan. itasāra; Nārāyan.a Pan.d. ita,
who authored the Gan. itakaumudī in 1356 c.e.; Mahendra Suri, who wrote the
Yantrarāja in 1370 c.e.; Jñānarāja, who wrote the Siddhāntasundara in 1503
c.e.; Nityānanda, who authored the Siddhāntarāja in 1639 c.e.; Mun̄ísvara,
who authored the Siddhānta-sarva-bhauma in 1646 c.e.; Kamalākara, who
composed the Siddhānta Tattva Viveka in 1658 c.e.; and Jagannātha Sāmrāt,
who prepared a Sanskrit translation of Arabic version of Euclid’s Elements
entitled the Rekhāgan. ita in 1718 c.e. and another work in 1732 c.e. by
the name Siddhānta Sāmrāt., which is a translation of Ptolemy’s Almagest.
During this post-Bhāskara II period there was a great spurt in astronomical
and mathematical activity on the narrow strip of land called Kerala along the
southwest coast of India. With a silent takeoff the twin sciences attained new
heights through the hands of erudite scholars such as Saṅgamagrāma Mādhava
(1340–1425), Vat.aśren. i Parameśvara (1360–1455), Gārgya Kerala N̄ilakan. t.ha
Somayāji (1444–1545), Jyes.t.hadeva and Tr.kkut.t.aveli Śaṅkara Vāriyar,
both of sixteenth century, Acyuta Pis.ārot.i (1550–1621), Putumana Somayāji
(1660–1740) and Śaṅkara Varman (1774–1839). Their contributions have a
quite different flavor.

2 Some Significant Developments and Their Motivations

One branch that attained great heights through the hands of Kerala math-
ematicians is trigonometry, or “jyotpatti” (jyā+utpatti = source of Rsines).
Indian mathematicians made notable contributions in this field in general.
The concept of jyā (Rsines) is seen to have evolved from their astronomical
needs such as those for computation of latitudes, position and movements of
planets in their respective orbits on the stellar sphere, and so on. Referring to
such astronomical needs, Nīlakan. t.ha Somayāji, in his Golasāra, briefly states
why the concept of jyā should be known.1 Owing its vast utility in astronom-
ical computations, the concept of jyā continued to attract the attention of
Indian astronomers and mathematicians. Introduction of the terminology jyā
by Āryabhat.a I in his Āryabhat. īya along with his methods for computation
marked the beginning of the scientific treatment of the concept. He set the
tradition of using the radius value 3,438′ for computing tabular Rsines, and
this value was obtained by dividing the circumference of a circle into 21,600
parts. This practice was followed by most of his successors. However, the

1 Sastry, Parameśvara: Transcript copy C.1024.E of the manuscript Golasāra
Siddhāntadarpan. amca of Gārgya Kerala Nīlakan. t.ha Mss No. T 846. B, (KUORI
and Mss Library, Thiruvananthapuram), iii vs.2. Also ref. K. V. Sarma (ed.):
Golasāra, Cr. Ed. with English Translation, VVRI, Hoshiarpur, (p. 14) 1970.
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value of R was improved later by Vat.eśvara to 3,437′44′′ and further refined
to 3,437′44′′48′′′ by Mādhava, which is equivalent to 1 radian in modern terms.
Computation of sine tables and interpolation of sine values needed for astro-
nomical calculations is found to be a general feature in Indian astronomy and
mathematics. As such, several methods for construction of tabular sines, in-
cluding the most innovative idea of using power series, along with techniques
for interpolation of desired values using tabular values and differences can
be had from various astronomical and mathematical works. In this context
mention may be made of:

1. Govindasvāmin’s second order difference interpolation formula in the form

f(x + nh) = f(x) + nΔf(x) +
n(n − 1)

2
{Δf(x) − Δf(x − h)},

which occurs in his Mahābhāskarīya bhās.ya.2

2. Parameśvara’s third-order interpolation formula stated in the Siddhāntad-
īpika, which is equivalent to Gregory’s expansion of the third-order Taylor
Series approximation for sine.3

3. Parameśvara’s formula for inverse interpolation of sine stated in the
Siddhāntadīpika, which is a forerunner of the mean value theorem of dif-
ferential calculus.4

4. Mādhava’s Taylor series for sine and cosine in the form:

f(x + nh) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + · · · ,

found in the Āryabhat. īya Bhās.ya5 of Nīlakan. t.ha Somayāji, and

2 Sastri, T. S. Kuppanna (ed.): Mahābhāskarīya of Bhāskarācārya with the Bhās.ya
of Govindasvamin and the super commentary Siddhāntadīpika of Parameśvara,
Madras, 1957 (iv. 22, pp. 201–202); For details ref. R. C. Gupta: Second Order
Interpolation in Indian Mathematics up to the Fifteenth Century, IJHS, Vol. 4,
(pp. 86–98) 1969.

3 Sastri, T. S. Kuppanna (ed.): Mahābhāskarīya of Bhāskarācārya with the Bhās.ya
of Govindasvāmin and the super commentary Siddhāntadīpika of Parameśvara,
Madras, 1957 (iv. 22, p. 205, vs. 14–16); For details see R. C. Gupta: An Indian
Form of Third Order Taylor Series Approximation for Sine, Historia Mathematica,
Vol. 1, (pp. 287–289) 1974.

4 Sastri, T. S. Kuppanna (ed.): Mahābhāskarīya of Bhāskarācārya with the Bhās.ya
of Govindasvāmin and the super commentary Siddhāntadīpika of Parameśvara,
Madras, 1957 (iv. 22, p. 205, vs. 18–19). For details see R. C. Gupta: A Mean
Value Type Formula for Inverse Interpolation of Sine, Mathematics Education,
Vol. 10, No. 1 (pp. 17–20) 1976.

5 Sastry, K. Sambasiva: Āryabhat. īyam with Bhās.ya of Nīlakan. t.ha, Part I, TSS No.
101, p. 55, Thiruvananthapuram (1930).
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5. Power series for sine, cosine, and square of sine, viz:

R sin θ = Rθ +
(Rθ)3

3!R2
+

(Rθ)5

5!R4
+ · · ·

R cos θ = R − (Rθ)2

2!R
+

(Rθ)4

4!R3
+ · · · ,

and

(R sin θ)2 = (Rθ)2 − (Rθ)4

(22 − 2
2 )R2

+
(Rθ)6

(22 − 2
2 )(32 − 3

2 )R4
+ · · · ,

discussed in the Yuktibhās. ā6 of Jyes.t.hadeva.

The invention of such trigonometric series attributed to Mādhava is an
important milestone in the development of the discipline. Desire for more
and more accuracy in astronomical computations gradually paved the way
for their entry into the field of such infinite series expansions for trigono-
metric functions. They developed such infinite series expressions hoping to
attain the desired degree of accuracy by taking as many terms as needed from
the infinite number of terms. Such power series expansions also have great sig-
nificance from a historical point of view because of their introduction for the
first time in the world of mathematics.

Among various methods for computation of sine tables, a brief mention
may be made of Nīlakan. t.ha’s procedure given in the Gol.asāra7 that is capable
of giving highly accurate values.8 Using this method we can construct accu-
rate sine and cosine tables consisting of l = 3 × 2m values at the arc interval
of angular measure h = θ/2m minutes for m = 0, 1, 2, 3, . . . , initiating the
procedure from θ = 30◦ = 1,800′. Denoting:

R sin
(

θ

2i

)
, R versin

(
θ

2i

)
, and R cos

(
θ

2i

)

respectively by Si, Vi, and Ci for i = 0, 1, 2, 3, . . . , m and the ith tabu-
lar Rsine and Rcosine respectively by Ji =R sin(ih) and Ki =R cos(ih) for
i =1, 2, 3, . . . , l, then the following algorithm is embedded in the enunciation
of Nīlakan. t.ha:
6 Thampuran, Rama Varma Maru and Akileswara Aiyar (ed): Yukt̄ibhās. ā, Part

I, Mangalodayam, Trichur, 1947, (Ch. vii). Also see C. T. Rajagopal and A.
Venkataraman: The Sine And Cosine Power Series in Hindu Mathematics, Journal
of Royal Asiatic Society of Bengal – Kolkata, Vol. XV. (pp. 1–13) 1949.

7 Golasāra (iii. vs. 6–14).
8 Mallayya, V. Madhukar: An Interesting Algorithm for Computation of Sine Tables

From the Golasāra of N̄ilakan. t.ha, Gan. itā Bhārati, Vol. 26, Nos. 1–4 (pp. 40–55)
2004. For details, ref. Mallayya, V. Madhukar: The Golasāra Concept of Jyā:
A Study in Modern Perspective, SSVV, Thiruvananthapuram (Chaps. 3 and 4),
2004.
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Step I: Starting from S0 = R/2 derived in a geometrical background for
θ = 30◦ = 1,800′ obtain the value of Si = R sin(θ/2i) for i = 1, 2, 3
etc. in succession using the geometrically described formula

Si =
1
2

√
S2

i−1 + V 2
i−1,

where

Vi−1 = R − Ci−1 and Ci−1 =
√

R2 − S2
i−1.

The value of Si−1 so obtained after (say) m repetitions (viz; Sm)
is to be taken as the first tabular R sin value. Then the table under
construction will be at arc interval of h = θ/2m minutes, where
θ = 1,800′, and will contain l values, where

l =
90 × 60

h
=

90 × 60
θ/2m

= 3 × 2m for m = 0, 1, 2, 3, . . . .

Step II: Compute R = 21,600×113
2×355 using the ratio π = 355

113 obtained from the
circumference to diameter values stated in the rule.

Step III: With J1 = R sinh = Sm as the first tabular R sin and
Jl = R sin(lh) = R as the last tabular R sin compute

Jl−1 =
√

R2 − J2
1 .

Step IV: Using Jl and Jl−1 compute

ΔJl−1 = Jl − Jl−1,

and λ = 2
(

ΔJl−1

R

)
.

Step V: Now compute

ΔJl−i = λ × Jl−(i−1) + ΔJl−(i−1),

Jl−i = Jl−(i−1) − ΔJl−i,

and Kl−i =
√

R2 − J2
l−i

for i = 2, 3, 4, . . . , l − 2.

Nilakan. t.ha’s geometrically described method to find the first tabular Rsine
value dates back to the period of Āryabhat.a I.

Another significant development that took place in the history of Kerala
mathematics is in the field of the infinite series. Kerala mathematicians soared
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into the so-far unexplored field of infinite series and made several inroads in
this highly fertile area while analysing various infinite series discovered by
them for the evaluation of the circumference of a circle from its diameter. Let
us have a look at what motivated Kerala mathematicians to break the barriers
of the finite. The peculiar relation between the circumference and diameter
had continued to attract the attention of Indian mathematicians from an-
cient times. Their awareness of the incommensurability of the circumference-
diameter ratio and their eagerness to find the value of the circumference from
the diameter with as much accuracy as possible prompted them to formulate
various methods for achieving their goal. Their continued efforts to attain the
desired degree of accuracy gradually steered them into the interesting field of
the infinite series.

Āryabhat.a I’s usage of the term “āsannah. ”, in the sense “approaching” or
“close to” or “very near to” or “almost equal to”, while giving the value of
the circumference of a circle with a given diameter, attracted the attention
of later mathematicians. Āryabhat.a I, in the Gan. itapāda of his astronomical
treatise Āryabhat. īya, states:9

��� ����	 
���
�� �	 dv����
���� ��sr����� ।
a�� �dv������������� �! tt#�����$॥

caturadhikam śatamas.t.agun. am dvās.as.t.istathā sahasrān. ām |
ayutadvayavis. kambhasyāsanno vr. ttaparin. āhah. ||

Four added to one hundred, multiplied by eight and then added to sixty-
two thousand is nearly (or very close to) the value of the circumference of
a circle of diameter twenty thousand.

According to this, the circumference is (4 +100)×8 = 62,000 for a circle whose
diameter is 20,000, which gives the value 3.1416 for π (symbolic notation ≈ is
used here for āsannah. in modern terms). Commenting on this technical term,
Nīlakan. t.ha Somayāji in his Āryabhat. īya Bhās.ya says:10

�� �$ #� ���&���'	 �	(���� )�! *�����+�,� -��। u.��,। ����
�-�� �
-�)���� । �� �$। �,� ���,� �'���� /��� ������$
����� , �,�+� �'����$ #����$ #� �$ ����� e� ����� ।
�,� � �'����$ #������&������,�+� �'���� /��� 0�#
����� e� , i)�,�,�+� ���,� �'����� 1�� $ kv��#
� ������)�	 ����� । ������3���	 �)��4�5#����)��,�
67��� । ������)�	 �� kv��# � 67����� ���$॥

9 Sastry, K. Sambasiva: Āryabhat. īyam with Bhās.ya of Nīlakan. t.ha, Part I,
Thiruvananthapuram Sanskrit series No. 101, (p. 41) Thiruvananthapuram
(1930).

10 ibid(pp. 41–42).
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kutah. punarvāstavīm saṁkhyāmutsr. jyāsannaivehoktā | ucyate | tasyā
vaktumaśakyatvāt | kutah. | yena mānena mīyamāno vyāso niravayavah.
syāt, tenaiva mīyamānah. paridhih. punah. sāvayava eva syāt | yena ca
mīyamānah. paridhirniravayavastenaiva mīyamāno vyāso’pisāvayava
eva, ityekenaiva mānena mīyamānayorubhayoh. kvāpi na niravayavat-
vam syāt | mahāntamadhvānam gatvāpyalpāvayavatvameva labhyam |
niravayavatvam tu kvāpi na labhyamiti bhāvah. ||
Why is it that the actual value is left out and this very near value stated? Let
me say. It is impossible to state (the actual value). Why? That unit which
leaves no remainder when the diameter is measured will leave a remainder
if used again for measuring circumference. Likewise, the unit which leaves
no remainder in the measure of the circumference will leave a remainder
in the diameter if measured by the same unit. Hence if both (the diameter
and circumference) are measured by the same unit, a remainderless state
(niravayavatvam) is never attained. Even if this is carried out farther to a
great extent only diminution of the remainder (alpāvayavatvam) can be ob-
tained but absence of remainder can never be obtained—this is the meaning.

Noticing the impossibility of attaining the remainderless state in the evalua-
tion of both the circumference and diameter using the same unit from each
other, Kerala mathematicians went on with their efforts to find better and
better approximations by reducing the remainder. Saṅgamagrāma Mādhava
is found to have succeeded in arriving at a good approximation for the cir-
cumference given the diameter that corresponds to the ratio, correct up to ten
decimal places. Nīlakan. t.ha refers to Mādhava’s enunciation regarding this in
his commentary on the Āryabhat. īya:11

��8� � �,9 �:����� ��
� �9�� ��,; ����� 8���$
����<�& ���, �! �tt�����, #���������;	 :�;� 8�&��$।
Vibudha netra gajāhihutāśana trigun. aveda bhavāran. a bāhavah.
navanikharva mite vr. ttivistare paridhimānamidam jagadurbudhāh. |

It has been stated by the learned that the circumference of a circle with
diameter 900000000000 is 2827433388233.

This gives π = 3.14159265359, which is correct to 10 decimal places.
Later, in the Līlāvatī commentary, Kriyākramakarī, the commentator Śaṅkara
Vāriyar has given different approximations citing various authorities. Accord-
ing to one statement the circumference is 355 for a diameter measure of 113,
and according to the another, the value is 1,04,348 for 33,215. This second
estimate gives the ratio 3.1415926539211. Like Nīlakan. t.ha, Śaṅkara also refers
to the more accurate value attributed to Mādhava.12 A much better value ap-
pears later, in the Sadratnamālā of Śaṅkara Varman, according to which the
11 ibid(p. 42).
12 Sarma, K. V.: Līlāvat̄i of Bhāskarācārya with Kriyākramakarī of Śaṅkara and

Nārāyan. a, V.V.R.I. Hoshiarpur (p. 377), 1975.
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circumference corresponding to the diameter measure 1 parārdha (i.e., 1017)
is 314159265358979324, which gives the ratio correct to 17 decimal places.13

Kerala mathematicians not only gave such good estimates for the circum-
ference given the diameter but also derived some exact expressions for the
circumference, which allowed them to compute the value with as much accu-
racy as desired. For this they introduced some ingenious geometrico-analytic
techniques based on the abstract concepts of continuous and repeated sum-
mations after the subdivision of tangents and arcs into a large number of
infinitesimally small segments.14 Their ingenious efforts in this direction, by
sowing seeds of several advanced ideas of integral calculus, limits, and in-
finitesimals finally resulted in breaking the barriers of the finite, paving the
way for their entry into the field of infinite series. The discovery of several
infinite series expansions for the circumference in terms of diameter is at-
tributed to Mādhava by later authorities on the subject, including his dis-
ciples. Incidentally, while computing the circumference using the Mādhava
series C = 4d − 4d

3 + 4d
5 − · · · , they realized the nature of the slow conver-

gence of the series, since it demands a large number of terms to give a good
approximation. This prompted Mādhava and his successors to make a fur-
ther study and analysis of series, which resulted in their discovery of several
rapidly convergent series and opened up new vistas in this unexplored field.15

Some of the infinite series thus discovered by Kerala mathematicians and
gathered from their works such as the Tantrasaṅgraha of N̄ilakan. t.ha, and the
commentary Yuktidīpika by Śaṅkara Vāriyar, the Yuktibhās. ā of Jyes.t.hadeva,
the Kriyākramakarī of Śaṅkara Vāriyar, the Karan. apaddhati of Putumana
Somayāji, and the Sadratnamālā of Śaṅkara Varman are given below in mod-
ern notation:

C = 4d − 4d

3
+

4d

5
− . . . ,

C = 4d − 4d

3
+

4d

5
− 4d

7
+ . . . + (−1)n−1 4d

2n − 1
+ (−1)n 4dn

(2n)2 + 1
,

C = 4d − 4d

3
+

4d

5
− 4d

7
+ . . . + (−1)n−1 4d

2n − 1
+ (−1)n 4d(n2 + 1)

[(n2 + 1)4 + 1]n
,

C =
16d

15 + 4 × 1
− 16d

35 + 4 × 3
+

16d

55 + 4 × 5
− . . . ,

x =
(

sin x

cosx

)
− 1

3

(
sin3 x

cos3 x

)
+

1
5

(
sin5 x

cos5 x

)
− . . . ,

or in other words,

tan−1 s = s − s3

3
+

s5

5
− . . . ,

13 Sarma, K. V.: Sadratnamala of Śaṅkara Varman, INSA, Delhi, iv. 2 (p. 26), 2001.
14 Thampuran, Maru: Yūktibhās. ā, Part I, Ch. vi, (pp. 84–116).
15 ibid(pp. 116–142).

Pure Mathematical Physics



The Indian Mathematical Tradition 161

C = d
√

12
{

1 − 1
3 × 3

+
1

32 × 5
− 1

33 × 7
+ . . .

}
,

C =
8d

22 − 1
+

8d

62 − 1
+

8d

102 − 1
+ . . . ,

C = 3d +
4d

33 − 3
− 4d

53 − 5
+

4d

73 − 7
− . . . ,

C − 3d =
6d

(2 × 22 − 1)2 − 22
+

6d

(2 × 42 − 1)2 − 42

+
6d

(2 × 62 − 1)2 − 62
+ . . . ,

C = 2d +
4d

22 − 1
− 4d

42 − 1
+

4d

62 − 1
− . . . + (−1)n−1 4d

(2n)2 − 1

+ (−1)n 4d

2[(2n + 1)2 + 2]
,

C =
4d

42 − 1
+

4d

82 − 1
+

4d

122 − 1
+ . . . .

Commenting on the computational aspects, Śaṅkara Vāriyar observes that it
is impossible to get the exact value, and thus possible to just find an approx-
imation by terminating the process at the stage that gives the desired degree
of accuracy. Śaṅkara says:16

e�	 �� �� $ =6����, �! �,0�# �� �-��$ kv��# � ����4�$।
����# ���;#,>	 �? @�����#�dy #�B��)����� #,@� =6����	
���#�'��� ॥

evam muhuh. phalānayane kr. te’pi yuktitah. kvāpi na samāptih. |
tathāpi yāvadapeks. am sūks.matāmāpādya pāścātyānyupeks.ya
phalānayanam samāpanīyam ||
Thus by computing the results successively, it is theoretically impossible
to come to an end. Hence the computation has to be terminated when
the desired accuracy is attained, and the final value taken, ignoring the
remainder.

To stop the computation at the desired stage, the infinite series has to be
truncated, and such truncation causes some error in the resulting value. In or-
der to compensate for the loss of terms due to truncation and to minimize this
truncation error, Kerala mathematicians introduced the concept of some sort
of transformation of the partial sums of the slowly convergent series by ap-
pending some remainder term, or rather, correction term to it, depending on
the number of terms in the partial sum. The introduction of a correction term
is an effective tool for getting a better approximation. The value computed
16 Sarma, K. V.: Kriyākramakarī (p. 385).
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after the introduction of a correction term is found to be better than that
computed without it, and the number of terms needed to get a desired degree
of accuracy is comparatively less when the correction term is introduced. The
Yuktibhās. ā gives a demonstration of the improvement caused in the calculated
value of the circumference by comparing the values obtained before and after
applying a correction term to partial sums of the series C = 4d− 4d

3 + 4d
5 −. . . .

It is found that the use of correction terms, not only improves the value to a
considerable extent but also expedites the convergence of the series. Realizing
this practical utility of correction terms, Kerala mathematicians introduced
the concept, throwing open the doors for further studies in this interesting
field of series approximation. In order to check the degree of accuracy at-
tained, they evaluated the corresponding error. In order to reduce the error
and increase the degree of accuracy they went on modifying the correction
term. Their search for better and more efficient correction terms naturally re-
sulted in an interesting analysis of correction terms. Detailed analytic deriva-
tions of different correction terms and the corresponding error analysis can
be had from the Kriyākramakarī of Śaṅkara Vāriyar17 and the Yuktibhās. ā
of Jyes.t.hadeva.18 Incidentally, several correction terms arrived at are found
to be successive convergents of certain special continued fractions.19 Another
important development in this direction that is to be taken note of is that
from the estimated error expressions obtained by them during their analysis
of correction terms, they succeeded in deriving some other useful infinite series
for computation of the circumference given the diameter.20

3 Notion of Proof: Forms, Nature, Style, and Purpose

Now, regarding the notion of proof and reasoning, it may be noted that Kerala
mathematicians placed considerable emphasis on providing an elaborate ex-
position of various results, by discussing their reasoning, supported by several
numerical illustrations and various kinds of proofs in algebraic and geometri-
cal backgrounds that were necessary for the benefit of all kinds of students.
Their exposition often started from the elementary level and was presented
in an instructive form that could be easily followed and understood by all.
In certain commentaries and other expository works some of the important
useful discoveries and demonstrations from ancient works like the Śulbasūtras
(of about 800 b.c.e) are also included and presented in a systematic manner.

17 ibid(pp. 387–391).
18 Thampuran, Maru: Yukt̄ibhās. ā, Part I Trichur (Ch. vi, pp. 120–142), 1947.
19 Hayashi, T., Kusuba, T., and Yano, M.: The Correction of Madhava Series for

the Circumference of a Circle, Centaurus, Vol. 33, pp. 149–174 (1990).
20 Mallayya, V. Madhukar: Śaṅkara’s Correction Functions for Series Approx-

imations, Recent Trends in Mathematical Analysis, Allied Publishers, Delhi
(pp. 176–189) 2003.
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Some examples are: the detailed exposition of Baudhāyana’s demonstrations
of the method for evaluation of the square root of 2 in a geometrical context,
given by Nilakan. t.ha in his commentary on the Āryabhat. īya; the demonstra-
tions of Baudhāyana’s theorem on the square of diagonals (popularly known
as the Pythagorean theorem) explained in the Yuktibhās. ā; and some of the
commentaries on the Līlāvatī and Āryabhat. īya. Detailed demonstrations of
such important mathematical truths formulated periodically are brought to
us through various commentaries and other expository works. The deriva-
tions pertaining to the power series expansions for trigonometric functions,
various infinite series for the circumference in terms of the diameter, cor-
rection terms for approximating series, error estimation and so on found in
the Yuktibhās. ā, Kriyākramakarī, etc., bear much historical significance in the
sense that one can hear heavy knockings on the doors of calculus and in-
finitesimal analysis several centuries before their use or discovery elsewhere.
In the course of their elaborate expositions they used various mathematical
tools such as the relation between arcs and the corresponding chords, simi-
larity of triangles, which is a geometrical manifestation of the rule of three,
the base–altitude–hypotenuse theorem or Baudhāyana’s theorem, the concept
of summation of finite and infinite geometric series, the concept of saṅkalita,
saṅkalita saṅkalita, or vārasaṅkalita, and so on. The elaborate demonstra-
tions given by them reveal their awareness of various advanced mathematical
concepts such as certain integrals, differentials, infinitesimals, and operations
with small or vanishing quantities (śūnya prāyamāya saṅkhya, which means a
number that has become almost zero). They devised and used certain special
mathematical techniques that are equivalent to the ε-δ techniques of mod-
ern analysis, the Cauchy–Stolz theorem on limits, integration as a limiting
sum, etc. Such abstract ideas are found to have been described in verbal form
in the Yuktibhās. ā, Kriyākramakarī, etc. Moreover, their discussions on cyclic
quadrilaterals give us some useful and important results such as Paramesvara’s
formula for the circumradius of a cyclic quadrilateral popularly known by the
name L’huiller’s formula,21 and the interesting concept of a third diagonal for
a cyclic quadrilateral,22 along with the formula for finding its area.

Indian mathematicians in general, and Kerala mathematicians in partic-
ular, were very fond of providing geometrical proofs for various arithmetic
and algebraic truths. Even progressive series were treated in geometrical con-
texts. Such demonstrations are capable of providing a clear picture of the
abstract ideas under discussion. Taking into consideration the type of results
and the nature as well as the background of the learners, the learned ācāryas
21 Sarma, N. Anantakrishna: Transcript copy of the Ms. Parameśvarakr. ta

Līlāvat̄ivyākhyā, p. 89. Also see T. A. Sarasvati Amma: Geometry in Ancient
and Medieval India, Delhi (pp. 108–109) 1991.

22 Dvivedi, Padmakara (ed): The Gan. ita Kaumudi of Nārāyan. a Pan. d. ita, Part II,
Benaras, 1942 (p. 58, vs. 48). For more details see K. V. Sarma: Kriyākramakarī,
pp. 348–362 and Maru Thampuran: Yukt̄ibhās. ā, Part I, Ch. vii (pp. 228–237).
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adopted different kinds of proofs for establishing the validity of the results.
They often employed algebraic or analytic proofs, numerical illustrations, geo-
metrical demonstrations, indirect methods, and even the method of direct
observation, experimentation, and contemplation. An algebraic or analytic
argument helps one to understand and analyze the underlying abstract math-
ematical concepts. A numerical illustration serves to verify or exemplify the
result. However, through a geometrical demonstration one can visualize the
underlying concepts and thus be convinced at once. For the benefit of those
who do not comprehend an algebraic argument or an analytic proof, a geo-
metric demonstration or a numerical illustration will serve the purpose, and
vice versa.

Apart from these types of demonstrations, it is seen that some sort of in-
direct proofs resembling the reductio ad absurdum style were also employed
for proving certain statements regarding the nonexistence of some mathemat-
ical entities (such as the square root of a negative number) by assuming the
corresponding alternative hypothesis and negating it after a logically-based
argument using already known and established facts. Kr.s.n. a Daivajña, in his
commentary, Bījāṅkura, on the Bījagan. ita, of Bhāskarācārya,23 establishes
that a negative number cannot have a square root in the following manner,
which in fact has a flavor of the reductio ad absurdum:

� �? 6	 >������'��। �9 �,�� ���। �����! ��)���;��। ��&��
�� �? 6	 67��,। C��D� ���� � ��&$ �������� �? 6	 67��,।
��� , C��D� �$ �� � �� & � ����। � �� ��:��;,
$। ��	�
��; � ��&����& ��&)�	 ���,d� �4��� ����pr�-�,$। �)��� ।
C��D� �	 ��G �;�� ���� ��� � ��G i�� �-�/��� । �
���d��D� ��� ���dvH�� �� ��&$। �9 ���D� �,� ���D� �,
�� ���, � �� & ��,�� � ���,�। ��� �&�$ ����)�� -�)���� ।
��4�! ��D� ���। �9��# ���dvH����&�! � D� �,���&D� �, �� ���,
���,� �� & ��,�� a��� �&�$ ����)�� -�)���� । e�	 ���
���# ��D� �	 � #B��� ��� ��&$ >� ��,�� ॥

na mūlam ks.ayasyāstīti | tatra hetumāha | tasyākr. titvāditi | vargasya hi
mūlam labhyate | r.n. āṅkastu na vargah. kathamatastasya mūlam labhy-
ate | nanu, r.n. āṅkah. kuto vargo na bhavati | na hi rājanideśah. | kimca
yadi na vargastarhi vargatvam nis.eddhumapvanucitamaprasakteh.
| satyam | r.n. āṅkam vargam vadatā bhavatā kasya sa vargam iti
vaktavyam | na tāvaddhanāṅkasya samadvighāto hi vargah. | tatra
dhanāṅkena dhanāṅke gun. ite yo vargo bhavet sa dhanameva |

23 Vasista, Viharilal: Bījagan. īta, with commentary, Bījāṅkura of Kr.s.n. a Daivajña,
Jammu (p. 16, vs. 13), 1977.
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svayorvadhah. svamityuktatvāt | nāpyr.n. āṅkasya | tatrāpi samad-
vighātārthamr.n. oṅkenarn. āṅke gun. ite dhanameva vargo bhavet asvayor
vadhah. svamityuktatvāt | evam sati kamapi tamaṅkam na paśyāmo
yasya vargah. ks.ayo bhavet |
There is no square root for a negative number. The reason is stated here.
It is because of its non squareness. The square root is obtained from the
square. A negative number cannot be a square. Then how can its square root
be obtained? All right, one may say this, but WHY is it that a negative
number is not a square. There is no royal injunction here (that rules out
the possibility of a negative number being a square). Moreover, if it is not
(said to be) a square, then it is also not said that squareness (vargatvam) is
prohibited–by reason of inapplicability (of any rule that would tell us what
to think in advance about negative numbers being squares). Very well, it
must be stated by the gentleman (bhavata) here who is saying that a neg-
ative number is a square: of WHAT number is it a square? Definitely, not
of a positive number because its square, being the product of two equals, is
the result of multiplication of the positive number with the positive num-
ber, which will be only a positive number. Also, not of a negative number
because here also the square, being the product of two equals, is the result
of multiplication of the negative number with the negative number, which
will be only a positive number. As such there is no way seen whatsoever by
which we can find a number whose square is negative.

In this manner it is established that a negative number cannot be a square
of any number and by the method of inversion (vyastavidhi) no number can
become a square root of a negative number.

Another accepted form for checking the validity of certain enunciations
and making corrections if necessary was direct practical observation and ex-
perimentation (nirīks.an. a parīks.an. am). The results and theories that sprouted
from such scientific observations were then treated as established truths.
The famous Dr.ggan. ita system of astronomical computation promulgated by
Vat.aśren. i Parameśvara is stated to have been developed by him on the ba-
sis of his observational and contemplative studies for a very long period.
Commenting on Verse 48 of the Golapāda of the Āryabhat. īya, Nīlakan. t.ha
observes24: cāvadhārya śāstrān. yapi bahūnyālocya pañca pañcaśadvars. akālam
nirīks.ya grahan. agrahayogādis. u parīks.ya samadr.ggan. itam karan. am cakāra.
Parameśvara’s famous Dr.ggan. ita system is thus the result of his fifty-five years
of rigorous observations, experimentation, and contemplation. This shows that
the results and theories derived from such practical observations were ac-
cepted by all, and such results form the pramān. as, or established truths, for
future use.

Various types of methods of proof were thus used, depending on the nature
of the result and taking into consideration the nature of the learner. As such,
24 Pillai, Suranad Kunjan: Āryabhat. īya with Bhās.ya of Nīlakan. t.ha, Part III,

Golapādā , Trivandrum Sanskrit series No. 185, Thiruvananthapuram (vs. 48),
1957.
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they are found to be quite informal in style and flexible in nature. They
are not based on any rigid formal deductive system starting from a set of
self-evident axioms. However, there was no compromise with rigor, and this
is evident from the proofs given in the Yuktibhās. ā and the Kriyākramakarī.
Highlighting the main difference between proof styles in India and the Greek
counterparts, T. A. Sarasvati Amma observes:25

But one has to concede that there was an important difference between the
Indian proofs and their Greek counterparts. The Indian’s aim was not to
build up an edifice of geometry on a few self-evident axioms but to con-
vince the intelligent student of the validity of the theorem, so that visual
demonstration was quite an accepted form of proof. This leads us to another
characteristic of Indian mathematics which makes it differ profoundly from
Greek mathematics. Knowledge for its own sake did not appeal to the Indian
mind. Every discipline (Śāstra) must have a purpose.

A proof for its own sake did not appeal to the Indian mind. Indian proofs
were clearly purpose-oriented. Even for certain results that were attained by
the power of human intellect through intuition, they often provided detailed
arguments in order to convince others and make them accept and experience
the truth of their inventions. Some of the main purposes in providing a proof
may be stated as follows:

1. To check the validity of the results.
2. To demonstrate the truth and underlying concepts in the most convincing

manner for various types of learners with different backgrounds.
3. To remove all kinds of doubts and misapprehensions, thereby enabling one

to reject any wrong notion in understanding the results.
4. To convince all contemporary scholars in the field about the validity and

authenticity of their results.
5. To enhance and stimulate the intellect of the learners by presenting several

logical arguments and choosing the style of argumentation in such a way
as to motivate them to make a further study or application of the results.

A prefatory note by Gan. eśa, in his commentary Buddhivilāsini, on the
Līlāvatī of Bhāskarācārya explicitly reveals these intentions. According to
Gan. eśa:26

/�-�, ��0/�-��	j, �;� �����<6	 � ##�tt	 ���� � -
����J�&�� (�� ) C�, ��	 �� ����;�� prKL��	 �+�� ����� ।
pr)�>	 ;! B��, �� ���6 ��6��;
&�)�� pr����
����;r� ##�tt	 ����;�� ��<6��� )��, 8� �d�! dN+॥

25 Amma, T. A. Sarasvati: Geometry in Ancient and Medieval India (p. 3).
26 Apte, V. G.: Līlāvat̄i with Buddhīvilāsinī of Gan. eśa Daivajña and Līlāvat̄i

Vivaran. a of Mahidhara, Anandasramom series. No. 107, Poona (Part I)(p. 1, vs. 4)
1937.
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vyakte vā’vyakta samjne yadutitamakhilam nopapattim vinā ta-
nnirbhrānto (vā) r. te tām sugan. akasadasi praud. hatām naiti cāyam |
pratyaks.am dr. śyate sā karatala kalitādarśavatsuprasannā
tasmādagryopapattim nigaditumakhilāmutsahe buddhivr. ddhyai ||
Whatever is stated in the vyakta gan. ita or avyakta gan. ita (arithmetic or
algebra) without rationale may not be intelligible and not without confusion
(nirbhrānta) and will not be acceptable to the assembly of great mathemati-
cians. It should be crystal clear and perceivable as through a hand mirror.
For enhancing the intellect of the learner, I shall describe the rationale of
the enunciations in their fullness.

Gan.eśa’s remark not only reveals the main purpose of providing a proof
argument but also throws light on the Indian mathematical tradition of ac-
cepting only well-established truths, which means that they were not used to
accepting any result without valid proof.

4 The Role of Commentarial Literature
in the Dissemination of Mathematical Knowledge

Most of the standard texts on Indian astronomy and mathematics contain only
enunciations of established truths and not their proofs. Such precise texts are
practically handbooks or reference manuals, and they contain a wealth of
knowledge in a nutshell. The absence of proofs and other demonstrations in
such precise texts, however, created a general feeling that Indian mathemati-
cians were indifferent to the notion of proof, that they accepted any result
without bothering to check its validity, and paid no serious attention to the
methodology. A close look at the standard treatises along with their accompa-
nying keys, called commentaries, reveals that this is baseless. Indian masters
followed the oral tradition for imparting knowledge to their disciples. As such,
they orally expounded the subject of study to their disciples and then summed
up the quintessence of their discourses in the form of sūtras in verse or prose
of great precision, in such a way that one may easily recite, learn, and recall
at times of need. The dearth of writing materials also prompted them to
minimize the contents of their treatises by jotting down only very little in
sūtra form for the sake of future reference. Such sūtras would be sufficient
and significant to those who knew the key to their meaning or to those who
had attended the discourses on them. However, for others they would appear
to be obscure and of little import. To throw light on the fund of information
contained in the sūtras and to preserve the elaborate proofs and other demon-
strations acquired from their masters, some of the disciples who had drawn
inspiration from the discourses endeavoured to take up the task of composing
elaborate commentaries on works of their choice as accompanying keys after
making a detailed study of the topic and gathering as much information as
possible from all available sources. Such accompanying keys, which impart life
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and spirit to the highly precise sūtras mentioned in the basic text, are called
paribhās. ās or vyākhyas. They form a perpetual gloss in which the information
embedded in the sūtras is brought to light, proved, elaborated, or amplified.
The commentaries are also independent works in which the enunciations given
in the basic treatise are expounded along with detailed proofs, illustrations,
derivations, and various demonstrations including visual ones in geometrical
forms, or whatever was necessary for a thorough understanding of the basic
text as well as the subject. Quoting at length every verse of the basic treatise,
the commentators expounded on them, often starting their discussions from
a basic level. The commentators, being products of their own times, looked
on the results from their point of view and gave their own interpretations.
Quite often they committed themselves to several novel ideas. They blended
their commentaries with current developments in the field and infused their
composition with their own inventions and ideas, which naturally enhanced
the quality and utility of such commentaries. Such commentarial literature
plays an important role in disseminating mathematical knowledge gathered
from over time.

5 Commentarial Literature: A Rich Source for the Study
of Proof, Methodology, and Motivation

Kerala is rich in commentarial literature, which forms a rich source for
study of detailed exposition, methodology and proof in Indian mathematics
and astronomy. Some of the commentaries, such as the Kriyākramakarī and
the Yuktidīpika, contain numerous saṅgraha ślokas (summary verses) toward
the end of each discussion. On the one hand, these saṅgraha ślokas sum-
marize the elaborate discussions given therein, enabling one to recapitulate
the quintessence of the exposition. On the other hand, they provide several
other important enunciations along with their elaborate proofs, derivations,
and demonstrations in both algebraic and geometric contexts. Such saṅgraha
ślokas are capable of throwing much light on the methodology adopted by
Indian mathematicians in formulating various concepts and theories periodi-
cally in accordance with their needs. Some of the important works that are well
known to contain detailed expositions of several mathematical or astronomical
results include various commentaries on the Āryabhat. īya of Āryabhat.a I, such
as those of Nīlakan. t.ha, Parameśvara, Sūryadeva, Someśvara, and Bhāskara I;
commentaries on the Līlāvatī of Bhāskarācārya, such as those of Gan.eśa
Daivajña, Parameśvara, Śaṅkara, and Nārāyan.a; the commentary on the
Mahābhāskarīya of Bhāskara I by Govindasvāmin, including Parameśvara’s
supercommentary on it; Kr.s.n. a Daivajña’s commentary on the Bījagan. ita of
Bhāskarācārya; Bhāskarācārya’s own commentary on the Siddhānta Śiroman. i,
and Nr.simha Daivajña’s commentary on it, commentaries on the Siddhānta
Śiroman. i by Gan. eśa Daivajña and Mun̄ísvara; Śis.yadhivr. ddhida Tantra of
Lalla with commentary on it by Bhāskarācārya; Tantrasaṅgraha of Nilakan. t.ha
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Somayāji with commentaries by Śaṅkara; Yuktibhās. ā of Jyes.t.hadeva in two
parts, the first part dealing with an exposition of mathematical enunciations
and the second part with astronomy; Gan. itayuktayah. , which is a compendium
of arguments in Kerala astronomy; Karan. apaddhati of Putumana Somayāji
with commentaries on it; Siddhānta-sarva-bhauma of Mun̄ísvara with his own
commentary on it; Siddhānta Tattva Viveka of Kamalākara Bhat.a and his
own commentary on it, etc.

These and various other works containing detailed expositions are capable
of throwing light on the nature of astronomical and mathematical contribu-
tions, the methodology adopted, motivations behind their contributions, no-
tion of proof, etc. if proper attention is paid to the original and unbiased study
of their contents. However, only a small part of the large mass of literature
has been published so far, and from among those published only a few have
been translated and studied. Extensive literature is still lying unexplored in
various repositories. A monograph compiled by K. V. Sarma entitled Science
Texts in Sanskrit in the Manuscripts Repositories of Kerala and Tamil Nadu27

identifies from about 400 repositories in Kerala and Tamil Nadu over 3,473
science texts in Sanskrit and 12,244 science manuscripts, including astronom-
ical and mathematical manuscripts. The knowledge embedded in these unex-
plored works handed down to us by the learned masters during the vigorous,
youthful days of the land is waiting to see the light of day through the hands of
the present and future generations. The present generation has unprecedented
power in their hands with the tremendous advances in science and technology.
With the advent of computers and internet facilities, modern ideas continue
to pour in from all directions. Apart from all this, the products of the present
age are capable of seeing much further than their predecessors because they
can reverently climb on their shoulders with whatever has been gleaned so far
from the vast store of writings lying in various repositories. A glimpse into the
past will always help one to have a better understanding of the present. But
while looking into the past, care has to be taken to give only due value and
weight to the actual facts gathered from original sources. Explorative studies
of an unbiased nature are capable of revealing the real flavor of the contribu-
tions, arousing the interest of all in the field, and revealing the insights and
inspirations of the Indian mathematical mind. Unifying the multitude of facts
gathered from such original sources, the old knowledge embedded in them can
be recovered in their depth and fullness, and expounded in modern terms in
a faithful manner, intelligible to the present generation. Leaving aside all out-
moded methods and concepts, rejecting wrong notions if any, and accepting
their ingenious ideas, one can restate the old knowledge in modern terms and

27 Sarma, K. V. and Sastry, V. Kutumba: Science Texts in Sanskrit in the
Manuscripts Repositories of Kerala and Tamil Nadu, Rashtriya Sanskrit
Sansthan, Delhi (2002).
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reconstruct the methodology in accordance with present needs, making full
use of various ideas flowing from all directions. Viewing the content of the
surviving materials in this manner through a modern perspective, one can
construct bridges between the past and the present so that knowledge from
the past can be understood by the present and handed down to the future
generations.
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1 Introduction

Theorem-proving, which originated in ancient Greece, has been the backbone
of deductive tradition in the history of mathematics, while algorithm-creating
flourished in ancient and medieval China and India, forming a strong trend
in mathematics. However, in comparison with the deductive tradition, the
functions of the algorithmic tradition have unfortunately been ignored.

Based on reviewing the case of the algorithm of extraction in Greece,
China, and India, this paper shows that theorem-proving in ancient Greece
and algorithm-creating in ancient and medieval China and India played
indispensable roles in advancing the development of mathematics, highlight-
ing the backgrounds of the different cultures and the disparate traditions in
mathematics.

2 The Algorithm of Extraction in Ancient Greece

The fourth proposition – if a straight line is cut at random, the square on the
whole equals the squares on the segments plus twice the rectangle contained by
the segments – from Book II of Euclid’s Elements (around the third century
b.c.e.). In this proposition, we found a figure for the presentation of the
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geometrical meaning of the formula, (a + b)2 = a2 + 2ab + b2 and not for the
algorithm of extraction. This figure was never used for extraction in Euclid’s
Elements.

The record of extraction comes from Heron and Theon of Alexandria.

2.1 Heron of Alexandria’s Method

Heron of Alexandria [1, pp. 317–318] gives a very good and interesting example
using this method in his treatise “Mετρικά,” written probably in the first
century c.e. His Metrica begins with the old legend of the practical traditional
origin of geometry in Egypt and seems to be very rich in definite references
to the discoveries of his predecessors. The names mentioned are Archimedes,
Dionysodorus, Eudoxus, and Plato. The Metrica was first discovered in 1896
in a manuscript of the eleventh (or twelfth) century at Constantinople by
R. Schöne and edited by his son, H. Schöne (Herons Opera, iii, Teubner, 1903).
In Metrica he gives the theoretical basis of the formulas used, and this is not a
mere application of rules to particular examples. It is also more akin to theory,
in that it does not use concrete measures, but simple numbers or units which,
may then in particular cases be taken to be feet, cubits, or any other unit of
measurement. Up to 1896, the Metrica was known only by an allusion to it in
Eutocius (on Archimedes’ Measurement of a Circle), who states that the way
to obtain an approximation to the square root of a nonsquare number is given
by Heron, as well as by Pappus, Theon and others, who had commented on
the Syntaxis (Almagest) of Ptolemy. The contents of the three books are as
follows:

Book I of the Metrica contains the mensuration of squares, rectan-
gles, and triangles (Chaps. 1–9), parallel trapezia, rhombi, rhomboids, and
quadrilaterals with one right angle (Chaps. 10–16), regular polygons from
the equilateral triangle to the regular dodecagon (Chaps. 17–25), a ring
between two concentric circles (Chap. 26), segments of circles (Chaps. 27–33),
an ellipse (Chap. 34), a parabolic segment (Chap. 35), the surfaces of a cylinder
(Chap. 36), an isosceles cone (Chap. 37), a sphere (Chap. 38), and a segment
of a sphere (Chap. 39).

Book II gives the mensuration of certain solids, the solid content of a
cone (Chap. 1), a cylinder (Chap. 2), rectilinear solid figures, a parallelopiped,
a prism, a pyramid and a frustum (Chaps. 3–8), a frustum of a cone (Chaps. 9
and 10), a sphere and a segment of a sphere (Chaps. 11 and 12), a spire or
torus (Chap. 13), the section of a cylinder measured in Archimedes’ Method
(Chap. 14) and the solid formed by the intersection of two cylinders with axes
at right angles inscribed in a cube, also measured in the Method (Chap. 15),
the five regular solids (Chaps. 16–19).

Book III deals with the division of figures into parts having given ratios
to one another; first plane figures (Chaps. 1–19), then solids, a pyramid, a cone
and a frustum, a sphere (Chaps. 20–23). He gives this method in an exercise
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on the mensuration of the surface of a triangle with sides 7, 8, and 9 using
the formula

E =
√

τ(τ − α)(τ − β)(τ − γ),

where he obtains at τ = 12, τ − α = 5, τ − β = 4, τ − γ = 3, so that
E =

√
720, where τ is the semiperimeter. The text3 [2, pp. 18–20] in liberal

translation is as follows:
“Since,” says Heron, “720 has not its side rational”, we can obtain its side

within a very small difference as follows.

Since the next succeeding square number is 729, which has 27 for its
side, divide 720 by 27. This gives 26 2

3 . Add 27 to this, making 53 2
3 ,

and take half of this or 26 1
2 + 1

3 . The side of 720 will therefore be
very nearly 26 5

6 . In fact, if we multiply 26 5
6 by itself, the product is

720 1
36 , so that the difference (in the square) is 1

36 . If we desire to make
the difference smaller than 1

36 , we shall take 720 1
36 instead of 729 [or

rather we should take 26 5
6 instead of 27] and by proceeding in the

same way, we shall find that the resulting difference is much less than
1
36 . In modern terms [3, p. 3]:

A = 720, α1 = 27 (α2
1 = 729 > 720),

A
α1

= 720
27 = 26 2

3 ,

α1 + A
α1

= 27 + 26 2
3 = 53 2

3 ,

1
2 (α1 + A

α1
) = 1

2 (53 2
3 ) = 26 5

6 ,
√

A ≈ 1
2 (α1 + A

α1
), or

√
720 ≈ 26 5

6 .

For a second approximation we take

α2 = 26 5
6 (α2

2 = 720 1
36 > 720)

A
α2

, α2 + A
α2

, 1
2 (α2 + A

α2
), and so on.

The above seems to be the only extant classical rule to find second and
further approximations to the value of a surd. But although Heron shows how
to obtain a second approximation, he does not seem to make any direct use of
this method himself, and consequently the question of how the approximations
closer than the first that are to be found in his works were obtained still
remains an open one.

3
Éστι δε καθoλική μέθoδoς ώστε τριών πλευρών δoθεισών oιoυδηπoτoύν τριγώνoυ τo εμβαδóν ευρείν
χωρίς καθέτoυ · oίoν έστωσαν αι τoυ τριγώνoυ πλευραί μoνάδων ζ, η, θ · σύνθες τα ζ και τα η και
τα θ · γίγνεται κδ · Toύτων λαβέ τo ήμισυ · γίγνεται ιβ · Áϕελε τας ζ μoνάδας · λoιπαί ε · πάλιν ά
ϕελε απó των ιβ τας η · λoιπαί δ · και έτι τας θ · λoιπαί γ · πoίησoν τα ιβ επί τα ε · γίγνoνται ξ ·
ταύτα επί τoν δ · γίγνoνται σμ · ταύτα επί τoν γ · γίγνεται ψκ · τoύτων λαβέ πλευράν και έσται
τo εμβαδóν τoυ τριγώνoυ ·Eπείoθν αι ψκ ρητήν την πλευράνoθκ έχoυσι, ληψóμεθα μετά διαϕóρoυ
ελαχίστoυ την πλευράν oύτως ·επεί o συνεγγίζων τω ψκ τετράγωνóς εστιν o ψκθ και πλευράν έχει
τoν κζ, μέρισoν τας ψκ εις τoν κζ · γίγνεται κς και τρίτα δύo ·πρóσθες τας κζ · γίγνεται νγ τρίτα
δύo ·Toύτων τo ήμισυ ·γίγνεται κςLγ́ ·́Eσται άρα τoυ ψκ η πλευρά έγγιστα τα κςLγ́ ·Tα γαρ κςLγ́
εϕ́ εαυτά ψκλς́ · ώστε τo διάϕoρoν μoνάδoς εστί μóριoν λς́ · Eάνδε βoυλώμεθα εν ελάσσoνι μoρίω
τoυ λς́ την διαϕoράν γίγνεσθαι, αντί τoυ ψκθ τάξoμεν τα νυν ευρεθέντα ψκ και λς́, και ταυτά
πoιήσαντες ευρήσoμεν πoλλώ ελάττoνα < τoυ > λς́ την διαϕoράν γιγνoμένην · .
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2.2 Theon of Alexandria’s Method

Theon of Alexandria [1, p. 526] lived toward the end of the fourth century c.e.
Suidas places him in the reign of Theodosius I (379–395); he tells us himself
that he observed a solar eclipse at Alexandria in the year 365, and his notes
on the chronological tables of Ptolemy extend to 372.

He was the author of a commentary on Ptolemy’s Syntaxis(Almagest)in
eleven books. We are indebted to it for a useful account of the Greek method
of operating with sexagesimal fractions, which is illustrated by examples of
multiplication, division and the extraction of the square root of a nonsquare
number by way of approximation. Theon of Alexandria has given a geometrical
explanation [3, pp. 5–6] of the algorithm of the square roots in his Commentary
on Ptolemy’s Almagest. Ptolemy, while constructing for astronomical use a
table of arc lengths, needed to calculate the chord of an arc of 36◦. This chord,
which is the side of an inscribed regular decagon, is R(

√
5 − 1)/2, where R is

the chord of the circle.
Ptolemy used a circle with R = 60, so the above relation is 30(

√
5 − 1), or√

4,500−30. For
√

4,500 Ptolemy gives (in the sexagesimal number system) the
approximation 67◦4′55′′, without explanation of the manner by which he ar-
rived at this result. The same procedure is illustrated by Theon’s explanation
of Ptolemy’s method of extracting square roots according to the sexagesimal
system of fractions. The problem is to find approximately the square root of
4,500◦, and a geometrical figure is used, which essentially shows the Euclidean
basis of the method.

Theon in his commentaries gives the following explanation:
First he takes the square ABΓΔ with surface 4,500◦, so the calculation of√

4,500 is reduced to the calculation of the side BΓ of the square. The nearest
square to 4,500 is 4,489 (=672). He constructs the square AEZH with area
4,489◦, the side of which is EZ = 67◦ and is the first approximation of BΓ .
Hence, from Fig. 1 we have

(ABΓΔ) = (AEZH) + (EBMZ) + (HZNΔ) + (ZMΓN).

A H K D

E Z
N

P

B M Π
Γ

Λθ

Fig. 1. Figure for Heron’s of Alexandria method of extraction
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Since the rectangles EBMZ, HZNΔ are equal and the square ZMΓN is
very small, we have the following:

(ABΓΔ) = (AEZH) + 2(EBMZ),

or
4,500◦ = 4,489◦ + 2 × 67◦ · ZM,

or
ZM =

4,500◦ − 4,489◦

2 × 67◦
=

11◦

134◦
.

By this relation we have that the side of the square ZMΓN , in the sexages-
imal system, approximately equals 4′. We can count as a second approximation
of the side BΓ (=

√
4,500),

BΓ = BM + MΓ = 67◦ + 4′ = 67◦4′.

Theon continues with the same procedure:
He constructs the square AΘΛK with side ΘΛ = 67◦4′ and surface

(AΘΛK) = (67◦4′)2 = 4,497◦56′16′′ = 4,489◦ + 268′ + 268′ + 16′′.

For the surfaces in the figure we have

(ABΓΔ) = (AΘΛK) + (ΘBΠΛ) + (KΛPΔ) + (ΛΠΓP ).

And we have as an approximation the following:

4,500◦ = 4,497◦56′16′′ + 2(67◦4′)ΛΠ,

or

ΛΠ =
4,500◦ − 4,497◦56′16′′

2(67◦4′)
=

2◦3′44′′

134◦8′
.

From the last relation we have that the side of the square ΛΠΓP is
approximately equal to 55′′. A third approximation of the side BΓ is

BΠ + ΠΓ = 67◦4′ + 55′′ = 67◦4′55′′,

the value given by Ptolemy for
√

4,500 in his Syntaxis (Almagest). After this
explanation, Theon summarizes the procedure into a general rule, or algo-
rithm:

When we seek a square root, we take first the root of the nearest
square number. We then double this and divide by it the remainder
reduced to minutes, and subtract the square of the quotient; then we
reduce the remainder to seconds and divide by twice the degrees and
minutes [of the whole quotient]. We thus obtain nearly the root of the
quadratic.4

4
“εάν ζητώμεν αρτθμoν́ τινóς την τετραγωνικήν πλευράν, λαμβάνoμεν πρώτoν τoυ
σύνεγγυς τετραγώνoυ αριθμoύ την πλευράν, είτα ταύτην διπλάσιάζoντες και περί τoν
γενóμενoν αριθμóν μερίζoντες τoν λoιπóν αριθμóν, αναλυθέντα εις πρώτα εξηκoστά,
απó τoυ εκ παραβoλής γινoμένoυ αϕαιρoύμεν τετραγωνoν και αναλύoντες πάλιν τα
υπoλειπóμενα εις δεύτερα εξηκoστά και μερίζoντες παρά τoν διπλασίoνα των μoιρών και
εξηκoστών, έξoμεν έγγιστα τoν επιζητoύμενoν της πλευράς τoυ τετραγωνικoύ χωρίoυ αριθμóν · .”
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2.3 The Influence and Evolution of the Algorithm of Extraction
in Western Europe5

Early printed sources on arithmetic generally use an arrangement of figures
similar to that found in the galley method of division. Pacioli (1494) gives what
follows in Fig. 2, and gradually, in the sixteenth century, the galley method
gave way to our modern arrangement, although it was occasionally used until
the eighteenth century. Among the early writers to take an important step
towards our present method was Cataneo (1546), who arranged the work
substantially as follows.6

Among the first of the well-known writers to use our method in its en-
tirety was Cataldi, in his Trattato of 1613. Most early writers gave directions
for “pointing off” in periods of two figures each, some placing dots above,
some placing dots below, some using lines, some using colons, and some using
vertical bars. Many writers, however, did not separate the figures into groups.

Pacioli's Method

00

018

1270

20880

0996980

18778980

99980001

9999

………….

9898989

11999

1

that is, (99.980.001)1/2 = 9999

54756 (234

4 primo duplata 4

14 secondo

46

12

27

9

185

184

16

16

0

Cataneo's Method 

Extractio radicu

Fig. 2. Pacioli and Cataneo’s method of extractions

5 [4, pp. 146–147].
6 It is like the method from India, probably influenced by it.
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In finding the square root, most of the early writers gave the rules without
explanation, or at most with merely a reference to the fact (a + b)2 = a2 +
2ab + b2.

A belief of the value of showing the reasoning behind the result led vari-
ous writers in the sixteenth century to give clear explanations based on the
geometric diagram.

3 The Algorithm of Extraction in Ancient China

3.1 The Pre-Method of the Algorithm of Extraction

“Squaring a field” in Suanshu shu [5], [6]

Question: There is a field of one mŭ: how many bu is it square?
Reply: It is square 15 bu and 15

31 bu.
Method : If it is square 15 bu it is in deficit by 15 bu; if it squares, 16 bu, there

is a remainder of 16 bu in which “bu” is a length unit in ancient China,
and it is the English translation of a Chinese original text. Combine the
excess and the deficit to make the divisor; Let the numerator of the deficit
be multiplied by the denominator of the excess, and the numerator of the
excess be multiplied by the denominator of the deficit; combine to make
the dividend. Reverse this as in the method of revealing the width

15 × 16 + 16 × 15
15 + 16

= 15
15
31

.

It is intriguing to find the “false position” method used here to find a good
approximation to a square root, therefore perhaps suggesting the possibility
that at the time of writing the algorithm for finding square roots had not
been discovered. Nowadays we know that the method of “false position” for
extraction in Suanshu shu, of course, works exactly only when linear functions
are involved, but in fact,

(
15 +

15
31

)2

= 239
721
961

,

which is very close to the desired value of 240. The method works well for
finding square roots if the two trial values are close enough to the solution
so that a straight line is a good approximation to the second-degree curve on
which the solution lies.

In ancient times the Chinese were familiar with the “false position”
method. There were 20 problems in the fourth chapter (Yı́ng Bù Zú) of the
Nine Chapters, in which only three are nonlinear.
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3.2 The Method of the Algorithm of the Extraction in the Nine
Chapters and Thereafter

The method of the algorithm of extraction is first found in Zhou Bi Suanjing
(around 100 b.c.e.), but only the name of the method. The method mentions
that a, b, and c are sides of a right triangle with c as the diagonal, and if a and
b are given, the general rule for finding c is equal to

√
a2 + b2. It is known as

the Pythagorean theorem, and it is important to mention that the procedure
of calculation is not given. However, in the Nine Chapters, a set of procedures
for calculating the extraction fortunately was given, and it is a beautiful pro-
gram with the probability to become a perfect program – the same as Horner’s
method – in China in the eleventh century. Here we must note that the pro-
cedure is totally algebraic, something like a computer procedure written in
FORTRAN [7]. The procedure in the Nine Chapters is different from the
notes of the Chinese mathematician Liu Hui. He has changed the division in
one step of the procedure in the Nine Chapters into subtraction. Let us take
a look at an example of the procedure enunciated by Liu Hui:

Extraction of the square root

2 2 2 2 23 23 23

55,225 55,225 15,225 15,225 15,225 15,225 15,225 2,325 2,325

1 1 2 4 4 4 43 43 46

1 1 1

3 3 3

a b c d f g h i j

a. Put the number as dividend.
b. Make use of a rod; shift it, jumping one column.
c. When you have got the quotient, with it, multiply the used rod once. That

gives you the divisor; and then with this, eliminate (making the division,
not subtracting from dividend directly).7

d. After having eliminated, double the divisor, that gives you the fixed divisor.
e. If again one eliminates, reduce the divisor, moving it backwards.
f. Again use a rod; shift it as you did at the beginning.
g. With the new quotient, multiply it once.
h. What you get, as auxiliary, is added to the fixed divisor; with this eliminate.
i. What has been got auxiliary joins the fixed divisor; if again one eliminates,

moving backwards, reduce as before; If, by extraction, you do not use up
your number that means that one cannot take its root. You must then put
the side as its denominator.

7 It is not method of Liu Hui, but in the Nine Chapters.
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The flow chart of the procedure is as followed in the Chemla [7, p. 316].
Compared with the Greek method, we can say that a similar method was

used in the Nine Chapters compiled in 100 b.c.e. or so, a century before Heron
of Alexandria’s Method. If a is an integral value, its square is approximately
close to A. They took

a +
A − a2

2a + 1
or a +

A − a2

2a

as the approximate value for
√

A. That is, they took the inequality

a +
A − a2

2a + 1
<

√
A < a +

A − a2

2a

for granted. Here it can be proved easily that

√
A ≈ 1

2

(
a +

A

a

)
=

1
2

(
a +

A − a2 + a2

a

)
= a +

1
2

A − a2

2a
.

Consider the statement “if, by extraction, you do not use up your number,
that means that one cannot take its root.” Unlike his predecessors, Liu Hui
does it with “put the side as its denominator.” As a matter of fact, he does
not think that

a +
A − a2

2a + 1
or a +

A − a2

2a

is exact; therefore, he defines and gives a method to calculate the irrational
number as a decimal fraction.

Liu Hui’s “put the side as its denominator” means that it is correct to
express

√
A as a square root of the radicand, whether it is a perfect square or

not. As for the unperfected square number, whose square root an irrational
number, Liu Hui gave the method named “qiu weishu” not the method “put
the side as its denominator,” which is correct. This is an approximation of√

A in the decimal number system.

3.3 Liu Hui’s Geometrical Explanation of the Algorithm
of Extraction

Liu Hui not only improves the algorithm of extraction, but also gives an
explanation for extracting the square root. It is very interesting that his
explanation is exactly the same as Theon’s method. Although Liu Hui lived
about 100 years before Theon, we have no evidence to show that the two
methods affected each other.

Let us look at Liu Hui’s geometrical explanation of the algorithm of ex-
traction. For example,

√
55,225 = 235. Depending on Fig. 3, he gives the

explanation for the algorithm of the square root, and then a solid for the cube
root. Although the figure used by Liu Hui is similar to Theon’s, and both
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D

L

A K

I

J

B

E F C

200

G

H

30

5

Fig. 3. Figure for Liu Hui’s method of extraction

explain the algorithm of extraction. The obvious difference is that Theon’s
67◦, 67◦4, 67◦455′′ is the integral part in the sexagesimal number system
while calculating, but Liu Hui’s 200, 30 and 5 is the square root, one by one,
in the decimal number system.

Another improved step made by Liu Hui is to change the division – the last
step of every circle in the whole procedure – into subtraction, as mentioned
above.

After this, in Zhang Qiujian’s Treatise (end of the fourth century c.e.)
and Sun Zi’s Treatise (fifth century c.e.), the procedure of the algorithm of
extraction is gradually improved, whereby the “borrowed rod” eliminated and
borrowed again moves like the divisor or fixed divisor.

Thus, the procedure is more orderly and continuous. It more resembles a
computer algorithm. In fact, It evolves to be a more mechanical and program-
ming algorithm of extraction named Zengcheng method in eleventh century
C.E. in China, which called P. Ruffiini–W.G. Horner’s method (1804, 1819)
in the West.

3.4 The Influence and Evolution of the Algorithm of Extraction
in China

The algorithm of extraction in China was formed before the age of the Nine
Chapters, and the procedure of the algorithm of extraction is actually used to
solve a special kind of equation of a higher degree, namely xn = A.

Based in the achievements in the Nine Chapters, even that of Liu Hui’,
Sun Zi’s Treatise and Zhang Qiujian’s Treatise, Jia Xian creates the figure
“Jia Xian-triangle,” which is called the Pascal’s-Triangle in the West, created
by Pascal 400 years later.

Being familiar with the program of extraction and “Jia Xian-Triangle,” Jia
Xian eventually created the Zengcheng method for extraction, enlightened by
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the “Zengcheng Qiulian Cao” obtained the numbers in “Jia Xian-Triangle.”
Getting the 7th root of a number, Jia Xian needs to know the coefficients
(1-7-21-35-21-7-1) in the triangle (Fig. 4).

1

1 7

1 6 21
1 5 15 35

1 4 10 20 35
1 3 6 10 15 21
1 2 3 4 5 6 7
1 1 1 1 1 1 1

7 21 35 35 21 7 1− − − − − − −

Fig. 4. The table of the method of Zengcheng

Jia Xian does the algorithm with his triangle, the method is called “Lich-
neg Shisuo.” Moreover, based on the “Zengcheng Qiulian Cao,” Jia Xian
creates the Zengcheng method for extraction (being the same as Horner’s
method), which is one of the greatest achievements of mathematics in ancient
China. In addition, another great achievements called “Tianyuan shu” and
“Siyuan shu” are also used for solving the higher degree equations. The the-
ory of equations and the expansion of rational numbers are motivated by the
algorithm of extraction and the solution of equations of higher degree.

4 The Algorithm of Extraction in Ancient India

The algorithm of extraction is found in Lilāvati, written in the twelfth century
in India. The method is very similar to the Chinese method in the Nine
Chapters, the only little difference concerning the course of calculating [8]:

Starting from the units place, mark alternately vertical and horizontal bars
above the digits so that the given number is divided into groups of two digits
each with the possible exception of the extreme left group. The extreme left
group will contain either one digit or two digits and will have a vertical bar
on its top on the right digit respectively (Fig. 5).

From the group on the extreme left, deduce the highest possible square
of a1 (say). Then write 2a1 in the neighbouring column; this is called pankti
(row). To the right of the number obtained from the above subtraction, write
the digit from the next group with a horizontal bar. Now divide the number
obtained by 2a1; this quotient a2 should not be more than 9. Now write 2a2
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88209

4

48

36

122

81

(2 Root pankti

2 4 1st

2nd

3rd

18

58
14

594

297

÷2

9

7

297

(9

(7

4)

58) 410

049

49

00

406

Fig. 5. The table of extraction in Lilāvat̄i

below 2a1 after shifting it one place to the right and add. The result is the
second pankti. Write the next digit to the right of the remainder so obtained
and from that subtract the square of the second quotient a2. Now to the right
of the remainder obtained, write the next digit and divide this by the second
pankti. This gives the third digit of the required square root. Now double the
third digit of the square root that should be added to the second pankti after
shifting it by one place to the right. The result is the third pankti. Then write
the next digit of the given number to the right of the remainder and subtract
from it the square of the third digit of the square root. Repeat this process.
The result is the required square root. For example,

√
88,209 =?

We’ll find the square root of
√

88,209 by Bhāskarācārya’s method. The
first thing is to make horizontal and vertical bars: 8́8̄2́0̄9́.

From the first group, 8, subtract the highest possible square, which is 4.
We get the first reminder 4 = 8́−4. Now write 8 (from the given number)
to the right of the remainder 4 to get 48. That 2 × 2 = 4 is the first pankti.
Divide 48 by 4, and see that the highest one digit quotient does not exceed 9.
Here, the quotient is 9. Write this 9 below 2 in the root column. In the same
horizontal line, write 2 × 9 = 18 with 1 below 4. Add two to get, 58, which
is the second pankti. Then subtract from 48 to get 12. To its right write the
next digit 2 and we get 122. From this subtract the square of 9 to get 41. To
the right of 41 write 0, the next digit from the given number. Divide 410 by
the second pankti, 58, and get 7 as the quotient and 4 as remainder. Next we
write this number 7 in the root column and to its right with 1 below 8. Add
two to get 594, which is the third pankti. Write the last digit 9 of the given
number to the right of the number 4 to get 49. From this subtract 72 = 49
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to get the remainder 0. The required square root is the number obtained by
writing the digit from the root column in the order in which we divided them.
Thus it is 297. We can get the same number as half of the third pankti.

5 A Brief Comparison and Conclusions

5.1 The Accuracy in the Algorithm, Approximation
in the Theorem-Proving System

In ancient Greece, according to the tradition of Euclid’s Elements, accuracy
was always emphasized, that is to say, the Greeks preferred theorem-proving
as the backbone of the deductive tradition to algorithmic methods. Therefore
their algorithm of extraction is approximately that of China and India.

5.2 The Minor Difference

There is a minor difference in the algorithm of extraction of the square root,
though both of them belong to the same mathematical tradition of algorithm-
construction. One point should be noted that the algorithm of extraction in
China is more that of India, and therefore it is the main reason that the
algorithm of extraction in China, first, developed to be the Zengcheng method
of extraction being the same as Horner’s method.

5.3 Brief Conclusions

Theorem-proving, as originated in ancient Greece, is the backbone of the
deductive tradition in the history of mathematics, while the algorithm-
construction, which flourished in ancient and medieval China and India, led
to a strong algorithmic trend in mathematics. However, in comparison to the
deductive tradition, the functions of the algorithmic tradition have unfortu-
nately been largely ignored.

Both theorem-proving in ancient Greece and algorithm-construction in
ancient and medieval China and India played indispensable roles in advancing
the development of mathematics.
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Mαθηματικών, Thessaloniki, Vol. 7, May 1987.

4. Smith, D. E.: History of Mathematics, Vol. 2: Special Topics of Elementary Math-
ematics, New York (1953).

5. Christopher, C.: The Suan shu shu ‘Writings on Reckoning,’
http://www.nri.org.uk/suanshushu.html, p. 88.

6. Shuchu, G.: The Collation of Suanshushu (A Book of Arithmetic), China Histor-
ical Materials of Science and Technology, Vol. 22 (2001), 3, pp. 214–215.

7. Chemla, K.: Should they read FORTRAN as if it were English? The Collection
of the Chinese University of Hong Kong. Vol. 1(2), 1987, pp. 301–316.

8. Patwardhan, K. S.: Somashekhara Amrita Naimpally, Shyam Lal Singh,
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Brahmagupta: The Ancient Indian

Mathematician
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The five centuries extending from 500 to 1000 c.e. saw tremendous
development of immense depth and complexity in the mathematics of Eastern
countries. The West was intellectually dormant in this period. Brahmagupta,
one of the most celebrated mathematicians of the East, indeed of the world,
was born in the year 598 c.e., in the town of Bhillamala during the reign of
King Vyaghramukh of the Chapa Dynasty. Bhillamala, referred to as Pi-lo-
mo-lo by Hiuen-Tsang, belonged to Sind, of undivided India. Brahmagupta
was the son of Jishnugupta and carried on his activities in Ujjain, the centre
of ancient Indian science. He made original contributions to mathematics and
astronomy that were embodied in the highly acclaimed treatises, Brahma-
sphuta-siddhānta and Khan. d. a-khādyaka. The former was composed, in 628
c.e., in his 30th year under the patronage of King Vyaghramukh, and the
latter in 665 c.e., at the mature age of 67. Aryabhata I (476 c.e.), Varahami-
hira (505 c.e.), and Bhaskara I (522 c.e.) were his illustrious predecessors,
while the giant of ancient Indian mathematics, Bhaskara II (1114–1185 c.e.),
appeared several hundred years after him [3,4]. Brahmagupta probably lived
a long life beyond 665 c.e., and died in Ujjain. He belonged to the Shiva
system of religion. The title “Ganak Chakra Chudamoni” (the gem of the
circle of mathematicians) was ascribed to him by Bhaskara II as a mark of
recognition of his talents in mathematics and astronomy.

The Brahma-sphuta-siddhānta and Khan. d. a-khādyaka were composed in
Sanskrit verse, as was the custom of the day. Prthudaksvami (864 c.e.),
the noted Sanskrit scholar, rendered the difficult slokas into simpler lan-
guage with interpretations, and adding illustrations some of which were his
own. Lalla and Bhattotpala, who appeared in 748 c.e., and 866 c.e., respec-
tively, were two other renowned commentators. The Brahma-sphuta-siddhānta
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consists of more than 24 chapters. The major portion of the treatise deals
with astronomy, arithmetic, geometry, while kuttaka, or algebra, is discussed
in the remaining chapters. In astronomy, Brahmagupta discussed the average
and real motions of the planets, the problems of place-time-distance concern-
ing the earth, sun, and planets, planetary conjunctions, and the rising and
setting of celestial objects. He correctly described the phenomena of solar and
lunar eclipses as being caused by the moon and earth casting shadows, on
which be based his calculations. One chapter is devoted to the description
and use of various astronomical instruments. In the chapters on mathemat-
ics, Brahmagupta discussed and established concrete rules and procedures for
various operations, all in verse as usual. He discussed some of the important
results obtained by his predecessors. He played a pioneering role in framing
the direct and inverse rule of three. The earliest treatment of zero in algebra
is to be found in Brahma-sphuta-siddhānta. A few rules and results in algebra
and geometry may be cited by way of illustration [8, 12, 15]:

(1) To evaluate a
b Brahmagupta gave the rule:

a

b
=

a

b + h
+

a

b + h

h

b
.

Example: Evaluate 9,999
97 by employing Brahmagupta’s rule.

Choose h = 2. Then

9,999
97

=
9,999
97 + 2

+
9,999
97 + 2

2
97

= 101 +
202
97

.

Employing the rule again,

202
97

=
202

97 + 4
+

202
97 + 4

4
97

= 2 +
8
97

.

Therefore
9,999
97

= 101 + 2 +
8
97

= 103
8
97

.

Similarly,

505
83

=
505

83 + 18
+

505
83 + 18

18
83

= 5 +
90
83

= 5 +
90

83 + 7
+

90
83 + 7

7
83

= 5 + 1 +
7
83

= 6
7
83

.

(2) To find the square of an integer the rule is:

x2 = (x − y)(x + y) + y2.
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(3) Given a side a of a right-angled triangle, the other sides are:

1
2

(
a2

m
− m

)
,

1
2

(
a2

m
+ m

)
,

where m is any rational number.
(4) The circumradius of a triangle two of whose sides are b, c, with p the

altitude at their point of intersection, is bc/p.
(5) The area of a cyclic quadrilateral with sides a, b, c, d is

√
(s − a)(s − b)(s − c)(s − d),

where 2s = a + b + c + d. The diagonals are

x =
{

(ab + cd)(ac + bd)
ad + bc

}1/2

and y =
{

(ad + bc)(ac + bd)
ab + cd

}1/2

.

Besides this basic problem, Brahmagupta discussed several other interest-
ing problems on quadrilaterals.

However, Brahmagupta’s most important mathematical contribution lies
in attempting to solve three types of algebraic equations:

1. Equations in one unknown (linear and quadratic)
2. Equations in several unknowns
3. Equations involving products of unknowns.

He found:

x =
(4ac + b2)1/2 − b

2a

as a root of the quadratic equation ax2 + bx + c = 0, although from his
discussion of some other problems it appears that he was aware of the exis-
tence of the other root as well. He found the solution to the indeterminate
quadratic equation involving two unknowns, nx2 + 1 = y2, in integers, pro-
vided one could obtain a solution (α, β) for the equation nx2 + k = y2 for
k = ±1,±2, or ± 4. The splendid ingenuity with which Brahmagupta solved
this equation for the first time in the world is highly acclaimed by modern
mathematicians. With the help of the solution so obtained, one can now ob-
tain an infinite number of solutions by repeated application of the process
known as “samāsa.” Considering that this scholastic feat was demonstrated
as far back as the beginning of the seventh century, Brahmagupta has been
described by many modern historians as one of the most gifted mathemati-
cians in the world. Florian Cajori [5], the noted historian, summed up the
matter in an extraordinarily suggestive manner: “The perversity of fate has
willed it that the equation y2 = nx2 + 1 should now be called Pell’s Problem,
while in recognition of Brahmin scholarship it ought to be called the ‘Hindu
Problem.’ It is a problem that has exercised the highest faculties of some of
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our greatest modern analysts.” Indian mathematical historians would like to
call it the Brahmagupta–Bhaskara problem, keeping in mind that Bhaskara
perfected Brahmagupta’s method of solution in the twelfth century; Bhaskara
used “Chakra-vala,” or a cyclic process, to improve Brahmagupta’s method
by doing away with the necessity of finding a trial solution.

The Khan. d. a-khādyaka was a systematic and complete work on Hindu
astronomy. It was composed by Brahmagupta in the later years of his life. Of
the 11 chapters, Khan. d. a-khādyaka proper consists of eight, together with the
Uttara part of three chapters. In the first, the author discusses methods and
topics in astronomy, and the latter part gives corrections to the former. In Ut-
tara Khan. d. a-khādyaka, Brahmagupta taught for the first time in the history of
mathematics the improved rules for interpolation using second differences and
he used it to compute the sine of an angle between the angles given in Aryab-
hata’s sine table. The rule employed is equivalent to the modern Newton–
Stirling interpolation equation up to second-order differences. The modern
mathematical world has yet to pay due recognition to Brahmagupta’s mathe-
matical genius on this score. The researcher, Kim Plofker [10], has described in
detail the method enunciated by Brahmagupta in Brahma-sphuta-siddhānta
to calculate the mean longitude of the sun if its true longitude is known.

Brahmagupta’s contributions influenced the mathematicians Sridhara,
Mahavira, Bhaskara II, and others of later periods in his own country. In
a sense, the great mathematical tradition that prevailed in the country from
the days of the Vedas, the Sulbas, and the Bakshali manuscripts of ancient ages
found its culmination in the appearance of Brahmagupta. Bhaskara II was his
most able and celebrated successor, upholding this great tradition of the land.
Moreover it was through the Brahma-sphuta-siddhānta and Khan. d. a-khādyaka
that the Arabs became conversant with Indian astronomy, arithmetic, and
algebra. These treatises reached Arabia during the reign of Khalif Al Mansur
(753–774 c.e.) of Baghdad and were translated by Al Fazari and Yakub ibn
Tarik into Arabic at Khalif’s insistence. The famous Sindhind of Arabian
scientific literature was a translation of the Brahma-sphuta-siddhānta, while
the only other contemporary astronomical treatise in Arabic, called Alarkand,
was supposedly the translation of Kanda-khādyaka. Both works were widely
used for a long time and exercised great influence on Arab mathematics and
astronomy. Musa Al Khowarizmi (825 c.e.), the great Arab mathematician,
based his astronomical tables on these translations. Arabs transmitted some
of these results to Europe centuries later. Albiruni resided in India during the
period 1017–1030 c.e., and learned Indian astronomy chiefly by studying the
Khan. d. a-khādyaka.

The 12th and 18th chapters of Brahma-sphuta-siddhānta, dealing with
arithmetic and algebra, were translated into English by Colebrooke [6]. The
Khan. d. a-khādyaka was translated into English with notes and comments by
Sengupta [14].

“Brahmagupta holds a remarkable place in the history of eastern civiliza-
tion.” His masterly treatises influenced Arab scholars for nearly 350 years
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when Islamic civilization was at its peak at Baghdad and elsewhere till about
1100 c.e. The influence spread to the rising Christian Europe through the
Arabs, via Spain, Italy, and other channels [9, 11]. Hindu creativity in math-
ematics and astronomy, however, gradually came to a halt at the advent of
barbaric invasions of the country by foreign invaders, while the Arab enlight-
enment in mathematics and astronomy also crumbled owing to their inher-
ent historical anti-science contradictions at about the same time [2]. Europe,
having remained dormant for centuries before this period, came forward and
swiftly and successfully occupied centre stage in cultivating mathematics and
science [1, 13]. Their march forward culminated in the industrial revolution,
and their march forward continues through modern times!

It has been accepted by all historians of science and mathematics that
these subjects can be creatively pursued only in an environment of social,
political, and economic stability. Prior to the Muslim invasions, India did have
a history of stability: the emergence of Aryabhata, Varahamihira, Bhaskara I,
Brahmagupta, and others indeed occurred in a golden phase of Indian history.
But with the raids of Mahmud of Ghazni in the early part of the eleventh
century c.e., the disintegration of the country began, expansion ended and
cultural and scientific advancement stopped. “The period of resistance began”
[7, 16, 17].

Brahmagupta is uniquely placed in the history of these great transitions
of civilization across geographical and temporal boundaries, across different
cultures, and across phases of human enlightenment and scholarship in math-
ematics and astronomy.

Brahmagupta was truly a man of immense genius, a genuine creative writer
with incomparable suggestions on many difficult mathematical problems (e.g.,
use of second differences, solution of indeterminate equations). His concept of
zero as a fundamental mathematical notion opened up a new vista. He made
far-reaching contributions to the coordinated structure of mathematics. His-
torians of mathematics are to this day engaged in painstaking research in
measuring the Stature of Brahmagupta in the perspective of world mathe-
matics.

Mathematics and science are considered to be a shared heritage of
mankind. Brahmagupta’s contributions are part of this heritage.

Appendix: Solution of Nx2 + 1 = y2, Where N Is an
Integer

Let (α, β) and (α′, β′) be integral solutions of the equations

Nx2 + k = y2 and Nx2 + k′ = y2

for some chosen values of k and k′. It can be easily shown that

x = αβ′ ± α′β, y = ββ′ ± Nαα′

are solutions of Nx2 + kk′ = y2.
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This is known as Brahmagupta’s lemma. It was described in Brahma-
sphuta-siddhānta (628 c.e.). This is known as the principle of composi-
tion or samāsa . Euler rediscovered it in 1764. In particular, set k = k′.
If Nα2 + k = β2, then x = 2αβ, y = β2 + Nα2 is a solution of the equation
Nx2 + k2 = y2. Hence one get:

N

(
2αβ

k

)2

+ 1 =
(

β2 + Nα2

k

)2

.

Therefore

x =
2αβ

k
, y =

β2 + Nα2

k

is a solution of Nx2 + 1 = y2.
We require, however, that the above solution be an integral solution. This

can happen under the following cases:

1. Suppose k = ±1; then the solution is integral.
2. Suppose k = ±2; again an integral solution x = αβ, y = β2−1 is obtained

(with positive sign).
3. Suppose k = 4; then x = αβ/2, y = (β2 − 2)/2. If α is even, then

since Nα2 + 4 = β2, clearly β is also even. Hence an integral solution
is obtained. If, however, α is odd, then the samāsa operation is applied
between

1
2
αβ

1
2
(β2 − 2) 1

1
2
α

1
2
β 1

Thus Brahmagupta obtained

x =
1
2
α(β2 − 1), y =

1
2
β(β2 − 3),

which are both integers when β is odd. When β is even, the earlier values
x = αβ/2, y = (β2 − 2)/2 are integers.

4. Suppose k = −4. Then,

N

(
1
2
αβ

)2

+ 1 =
(

1
2
(β2 + 2)

)2

.

Applying samāsa to

1
2
αβ

1
2
(β2 + 2) 1

with itself and eliminating N , Brahmagupta obtained

Pure Mathematical Physics



Brahmagupta: The Ancient Indian Mathematician 191

x =
1
2
αβ(β2 + 2), y =

1
2
(β4 + β2 + 2)

as the solution of Nx2 + 1 = y2. Similarly applying samāsa between

1
2
αβ

1
2
(β2 + 2) 1

1
2
αβ(β2 + 2)

1
2
(β4 + β2 + 2) 1

the following integral solution is obtained when β is odd or even:

x =
1
2
αβ(β2 + 1)(β2 + 3), y = (β2 + 2)

[
1
2
(β2 + 1)(β2 + 3) − 1

]
.

Examples : Starting with 92×12+8 = 100, a solution x = 120, y = 1,151 for
the equation 92x2+1 = y2 is obtained. Similarly starting with 83×12−2 = 92,
a solution x = 9, y = 82 for the equation 83x2 + 1 = y2 is obtained.
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1 Introduction

Southeast Asia is divided into two parts, namely, Mainland Southeast Asia
and Insular Southeast Asia (also called the Indo-Malay Archipelago). Main-
land Southeast Asia is further divided into two parts; one is Vietnam, where
Chinese influence is larger than Indian influence, and the other includes Burma
(Myanmar), Cambodia, Laos, and Thailand, where Indian influence is greater.
The Malay Peninsula is a part of Mainland Southeast Asia geographically, but
is culturally closer to Insular Southeast Asia.

Mainland Southeast Asia is a kind of crossroads of Chinese and Indian
culture, and the traditional astronomies there were also influenced by Chinese
and Indian astronomy.

I discussed Mainland Southeast Asian astronomy at a conference held in
Singapore in 1999 [11] and a conference held in Shanghai in 2002 [13]. The
present paper is a continuation of these papers, and is a revised version of
a paper presented at the First International Conference on History of Exact
Sciences along the Silk Road, held in Xi’an, China from July 31 to August 3,
2005.

2 Vietnamese Calendrical Astronomy

In Vietnam, the Chinese calendar was introduced first, and modified later.
I discussed the history of Vietnamese mathematics and astronomy at a confer-
ence held in Tianjing in 2002 [12]. A rough history of the Vietnamese calendar
is as follows
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University under the guidance of Prof. K. S. Shukla, and also completed his
doctorate course at Hitotsubashi University (Japan) in the social history of the
East.
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(1) Acceptance of Chinese calendars, notably the Shoushi calendar.
The Yuanshi (official history of the Yuan Dynasty) says that a Chinese
calendar was given to the Vietnamese king (Tran Dynasty) in 1265. At
that time, the famous Shoushi calendar, which is one of the best tradi-
tional calendars in China, was not developed, and the Daming calendar
of the previous Jin Dynasty was still used in China.
The Dai-Viet su-ky toan-thu (official dynastic history of Vietnam)
says that the Shoushi calendar was given to the Vietnamese king
(Tran Dynasty) by the Chinese emperor in 1324.
From the above sources, we can presume that the Chinese calendars were
accepted in Vietnam by the early fourteenth century.

(2) Hiep-ky calendar
The Dai-Viet su-ky toan-thu says that the Shoushi calendar was converted
into the Hiep-ky calendar in 1339 (Tran Dynasty). This record possibly
means that the name of the calendar was changed, and does not necessarily
mean that the method of calculation was amended.
The Mingshi (official history of the Ming Dynasty) reports that the Datong
calendar of China was given to the Vietnamese king (Tran Dynasty) in
1369, the year after the establishment of the Ming Dynasty.
It is possible that the Datong calendar, which is almost the same as the
Shoushi calendar, was harmoniously accepted in Vietnam at that time.

(3) Thuan-thien calendar
The Dai-Viet su-ky toan-thu mentions that the Hiep-ky calendar was abol-
ished, and the Thuan-thien calendar was adopted in 1401 (Ho Dynasty).
The difference between these two calendars is not recorded.

(4) Acceptance of the Chinese Datong calendar
Vietnam was directly ruled by the Ming Dynasty of China from 1413 to
1428, and the Datong calendar must have been used. The Le Dynasty was
founded in 1428 in Vietnam, but there is no record that the calendar was
changed.
The Mingshi reports that the Datong calendar was given to the Mac, who
ruled Vietnam for a certain period, in 1540.
According to Chang [2], Nguyen Huu-than wrote in his Y-trai toan-phap
nhat-dac-luc in 1829 that the Datong calendar had been used until the
Hiep-ky calendar (= Shixian calendar, which is the last traditional Chinese
calendar, made under Western (Jesuit) influence) was adopted in 1813.

(5) Hiep-ky calendar (= Shixian calendar)
According to Nguyen Huu-than, as we have seen above, the Chinese Shix-
ian calendar was adopted in Vietnam as the Hiep-ky calendar in 1813
(Nguyen Dynasty). This Hiep-ky calendar should not be confused with
its previous namesake.
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Chang [2] compared Vietnamese chronological tables with the Chinese
calendar, and pointed out that the Shixian calendar was actually used in
Vietnam from 1813 to 1840.

(6) Consideration of the longitudinal difference
Chang [2] pointed out that the Vietnamese Hiep-ky calendar has differed
from the Chinese Shixian calendar from 1841.
This must be due to the consideration of the longitudinal difference be-
tween Vietnam and China.

3 Mainland Southeast Asian Astronomy
(Except for Vietnam)

In the traditional calendars of Mainland Southeast Asia (except for Vietnam)
[5,6], namely Burma [8,9,18], Cambodia [7], Laos [4,17] and Thailand [1,10],
and also the Tai (Dai) people in Sipsong-panna in Yunnan province in South
China [20], the sidereal year is usually used instead of the tropical year. The
length of a year and that of a month used there are as follows:

Some of the Southeast Asian calendars that appear to have followed the
Ārdharātrika school (one of the schools of Hindu astronomy [16]) are as
follows:

Length of a year Length of a month
(days) (days)

Souriat (Ayutthaya
dynastsy, Thailand) [3,10] 365.25875 29.530583

Suding and Suliya
(Sipsong-panna, Yunnan,
China) [20] 365.25875 29.530583

Makaranta (Burma) [9] 365.25875 29.530583

Some of the Southeast Asian calendars that appear to have followed the
Saura school (one of the schools of Hindu astronomy) are as follows:

Length of a year Length of a month
(days) (days)

Xitan (Sipsong-panna) [20] 365.258756481 29.530588

Thandeikta (Burma) [9] 365.258756477 29.530588

Since these calendars are lunisolar, a certain cycle of intercalation is
needed, and the 19-year cycle is usually used. This cycle has 7 intercalary
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months in 19 years. It is harmonious with a tropical year, but not with a
sidereal year. This fact obliges us to suspect that the origins of the sidereal
year and the 19-year cycle are different.

The length of a year used in Mainland Southeast Asia as well as in Hindu
astronomy is slightly longer than the length of the actual sidereal year, while
the length of a synodical month used there is almost exact. There is almost
no room to doubt the Indian origin of the sidereal year. However, the origin
of the 19-year cycle is controversial.

4 Mainland Southeast Asian 19-Year Cycle

I discussed the origin of the 19-year cycle in the Mainland Southeast Asian
calendar at a conferences held at Chengdu in 2004 [14] and at Chiang Mai in
2004 [15]. I would like to continue my discussion of this topic in this paper.

In the Mainland Southeast Asian calendars, there are 7 intercalary months
every 19 years. Further, the 29-day month and the 30-day month are arranged
alternately. An intercalary month has 30 days, and 11 extra days are dis-
tributed in every 57 years. Therefore, a cycle of 57 years (3 × 19 years) has
705 months, and has 20,819 days. This method was widely used in Main-
land Southeast Asia [6, 20]. The 19-year cycle of intercalation was already
mentioned in the “Souriat” of the Ayutthaya Dynasty, Thailand [10].

This method is not harmonious with the proper length of a year and that
of a month in the Mainland Southeast Asian calendars, and may be considered
to be a kind of simplified method. According to this method, a year becomes
365.2456 (=20,819/57) days, and a month becomes 29.530496 (=20,819/705)
days. Both lengths are different from their correct lengths in the Mainland
Southeast Asian calendars. It is likely that this difference is due to the com-
bination of two different traditions.

In Fig. 1, the relationship between the length of a year and that of a month
is shown. If the 19-year cycle is used, a combination of a year and a month
is on a horizontal line in the figure. If the 19-year cycle should be used, it is
clear at first sight that a synodical month can be combined with a tropical
year with some inaccuracy, but it is almost impossible to combine a synodical
month with a sidereal year. It is impossible to suppose that the 57-year cycle
was created in Southeast Asia, where the sidereal year is used instead of the
tropical year. If a synodical month was combined with a sidereal year, the
well-known 76-year cycle (76 = 4 × 19) would have been still better. The
57-year cycle evidently presupposes a certain knowledge of a tropical year,
because it is a very good harmonization of a synodical month and a tropical
year.

First, I shall show that this 19-year cycle is not of Indian origin. Usu-
ally, Hindu calendars use the sidereal year, and the 19-year cycle is not har-
monious with the sidereal year and can be used with the tropical year only.
Almost the only Sanskrit astronomical work that mentions the 19-year cycle is
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Fig. 1. Relationship between the length of a year and a month

the Romaka-siddhānta, which has been summarized in the Pañca-siddhāntikā
of Varāhamihira (sixth century c.e.). The Pañca-siddhāntikā (I.15) states
that there are 1050 intercalary months and 16,547 elided days in 2,850 years
in the Romaka-siddhānta. In other words, 2,850 (=19×150) years have 35,250
(=2,850×12 +1,050) months, including 1,050 (=7×150) intercalary months,
and 1.040,953 (=35,250 × 30 − 16,547) days. Accordingly, 1 year becomes
365.2467 days (tropical year) and 1 month becomes 29.530582 days. (The use
of the tropical year is exceptional in classical Sanskrit texts.) This value is
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very close to that of Hipparchus of ancient Greece. (The value in the Romaka-
siddhānta may have been influenced by the Greek value.) Both lengths used
in the Romaka-siddhānta (and also Hipparchus) are different from the value
used in Mainland Southeast Asian calendars. Therefore, the Indian 19-year
cycle is not the origin of that of Mainland Southeast Asia.

It is well known that the 19-year cycle of intercalation was widely used in
ancient China. Let us see the calendars that were used or produced during the
Western Han (206 b.c.e.–23 c.e.) and Eastern Han (25–220 c.e.) Dynasties.
The Sifen calendar (used until the beginning of the Western Han Dynasty,
and again used in the Eastern Han Dynasty), the Taichu calendar (produced
in the Western Han Dynasty and used until the beginning of the Eastern
Han Dynasty), the Qianxiang calendar (produced at the end of the Eastern
Han Dynasty, and used in the Three Kingdoms period), etc., used the 19-year
cycle. The length of a year and that of a month are as follows. (The value
used in the Sifen calendar is the same as that of Callippus in ancient Greece.
The Chinese cycle and the Callippus cycle are probably independent.)

Chinese calendars [19] Length of a year Length of a month
(days) (days)

Xitan The Sifen calendar 365.2500 29.53085

The Taichu calendar 365.2502 29.53086

The Qianxiang calendar 365.2462 29.53054

It is clear that all of them are different from the value used in Mainland
Southeast Asian calendars.

There was also the “modified Taichu calendar” in the Eastern Han
Dynasty. It was proposed by the followers of the Taichu calendar, but was not
officially used. The proposal is recorded in the “Treatise of Tuning System and
Calendar” of the Xuhanshu (continuation of the history of the Han Dynasty),
which is included in the Houhan-shu (official history of the Later (Eastern)
Han Dynasty). In the original Taichu calendar, 171 years have 62,457 63/81

(=62,457
1,197/1,539) days, but the “modified Taichu calendar” proposed to

omit the fraction (63/81 = 1,197/1,539) every 171 years. Then, 171(=9× 19)
years become 62,457 days, and 57(=3× 19) years become 20,819 days.

This value (57 years = 20,819 days) is exactly the same as that of the
Mainland Southeast Asian calendars. Therefore, I presume that the ori-
gin of the 19-year cycle and the 57-year cycle of the Mainland Southeast
Asian calendars is the “modified Taichu calendar,” which was proposed
in the Eastern Han Dynasty. We can also note that the 60-year cycle
seems to have been introduced to the Tai people from Central China
during the Han Dynasty or so, and accordingly, the supposition that the
“modified Taichu calendar” was also introduced to the Tai people is also
possible.
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5 Conclusion

Vietnamese astronomy was originally based on Chinese astronomy, and
developed into Vietnamese traditional astronomy suitable to the Vietnamese
longitude.

Other Mainland Southeastern astronomies were influenced by both
Chinese and Indian astronomy, and developed into their traditional
astronomies, which are still used to determine traditional festivals, etc.

I presume that the Tai people in South China received the influence of
the Chinese calendar, such as the use of the 60-year cycle, at the time of the
Han Dynasty (206 b.c.e.–220 c.e.) or so, and the “modified Taichu calendar”
(Eastern Han Dynasty (25–220 c.e.)) may have been the origin of the 19-year
and 57-year cycles used in the Tai calendar and other Mainland Southeast
Asian calendars. Later, the Indian calendar was introduced into Southeast
Asia, and is the origin of the use of the sidereal year, etc. These Chinese
and Indian traditions were combined in mainland Southeast Asia, and devel-
oped into the Mainland Southeast Asian calendars, which have the unique
characteristics of this region.
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1. Bailly: Traité de l’astronomie indienne et orientale. Paris (1787).

2. Chang, Yung (= Zhang Yong): Yue-li shuorun-kao (Sur la concordance des dates
neomeniques du calendrier annamite et du calendrier chinois de 1759 a 1886, in
Chinese with French abstract). Xinan yanjiu, No. 1, 25–35 (1940).

3. Dikshit, Sankar Balakrishna: (English Translation of) Bharatiya Jyotish Sas-
tra (History of Indian Astronomy). Translated by Prof. R. V. Vaidya, Part II,
History of Astronomy during the Siddhantic and Modern Periods, The Controller
of Publications (Government of India), Delhi (1981) [This book was originally
written in Marathi, and published at Pune in (1896)].

4. Dupertuis, Silvain: Le Calcul du Calendrier laotien. Peninsule, No. 2, 25–113
(1981).

5. Eade, J. C.: Southeast Asian Ephemeris, Solar and Planetary Positions,
638–2000 c.e. Southeast Asia Program, Cornell University, Ithaca (1989).

6. Eade, J. C.: The Calendrical Systems of Mainland Southeast Asia (Handbuch
der Orientalistik, III. 9). E. J. Brill, Leiden (1995).

7. Faraut, F. G.: Astronomie cambodienne. F.-H. Shneider, Saigon (1910).

8. Htoon-Chan: The Arakanese Calendar. Third edition, The Rangoon Times
Press, Rangoon (1918).

9. Irwin, A. M. B.: The Burmese and Arakanese Calendars. Hanthawaddy Printing
Works, Rangoon (1909).

10. Loubere, de la (translated from French by A. P.): A New Historical Relation
of the Kingdom of Siam. London (1693), reprinted, Oxford University Press,
Kuala Lumpur (1969).

Pure Mathematical Physics



200 Yukio Ôhashi
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Ever since the great Henry Thomas Colebrooke (1765–1837) translated the
Līlāvatī into English2 at the beginning of the nineteenth century, the concern
of the historians of Indian mathematics has been the exploration of primary
sources in Sanskrit. This emphasis on the Sanskrit texts is unexceptionable
because Sanskrit has been the chief medium of intellectual discourse in India
and the major vehicle of pan-Indian dissemination of ideas.

However, there have also been other parallel streams of intellectual com-
munication in India: the Middle Indo-Aryan variants called the Prakrits, the
succeeding New Indo-Aryan languages, the Dravidian languages of the South,
and Persian. All these languages possess rich and varied literature, which may
contain works on mathematics as well.

The extent and the nature of the exchanges between the pan-Indian San-
skrit on the one hand, and these regional languages on the other, have yet to
be properly mapped. We may, however, postulate certain hypotheses on the
nature of the exchanges. It is certain that these exchanges were never one-
sided, i.e., from the “Great Tradition” of Sanskrit to the “Little Traditions” of
regional languages. The two traditions were mutually complementary. While
mathematical ideas and processes were systematized in Sanskrit manuals, the
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broader dissemination of these ideas took place in the regional languages.
Conversely, Sanskrit has also absorbed much from the local traditions. An-
thropologists recognize today that the so-called “Little Traditions” played a
significant role in shaping the “Great Tradition.”3

As mentioned earlier, the process of give-and-take is yet to be mapped,
and this is especially true of mathematical literature. Without exploring the
literature in regional languages, a full picture will not emerge on how mathe-
matical ideas were developed and systematized in Sanskrit manuals and how
they were disseminated and popularized in the regional languages.

The mathematical literature in Sanskrit has been surveyed and studied
to a large extent.4 But no attempts have been made so far to even sur-
vey the mathematical literature available in the regional languages. There
have been one or two exercises to compile bibliographies of source materi-
als in the regional languages, but none have come to fruition.5 In the late
1950s, K. R. Rajagopalan published brief surveys of mathematical literature
in the four states of South India.6 This includes works composed in Tamil,

3 On this, see, inter alia, Swami Agehananda Bharati, Great Tradition and Little
Traditions: Indological Investigations in Cultural Anthropology, Chowkhamba
Sanskrit Studies, Vol. XCVI, Chowkhamba Sanskrit Series Office, Varanasi
(1978).

4 To mention the most prominent works: Bibhutibhusan Datta and Avadhesh
Narayan Singh, History of Hindu Mathematics: A Source Book, 2 parts, 1935,
1938; single volume edition: Asia Publishing House, Bombay etc., 1962; A. K. Bag,
Mathematics in Ancient and Medieval India, Chaukhamba Orientalia, Varanasi-
Delhi, 1979; T. A. Saraswati Amma, Geometry in Ancient and Medieval India,
Motilal Banarsidass, Delhi-Varanasi-Patna, 1979; David Pingree, Census of the
Exact Sciences in Sanskrit, Series A, Volumes 1–5, American Philosophical So-
ciety, Philadelphia, 1970–1994 (in progress); also the large number of papers by
R. C. Gupta listed in: Takao Hayashi, A Bibliography (1958–1995) of Radha Cha-
ran Gupta, Historian of Indian Mathematics, Historia Scentiarum, 6.1 (1996)
43–53.

5 K. V. Sarma, A Bibliography of Kerala and Kerala-based Astronomy and Astrol-
ogy, Vishveshvaranand Institute, Hoshiarpur, 1972, though primarily devoted to
works in Sanskrit, contains several works on mathematics composed in Malay-
alam as well. The Government Oriental manuscripts Library, Madras, brought
out a Malayalam work on Mathematics, Kan. akkusāram, ed. D. Achyutha Menon,
Madras, 1950. But, as far as I know, no study of this work has appeared to date.

6 K. R. Rajagopalan, Mathematics in Karnataka, Bhavan’s Journal, 5.6 (October
1958) 52–56; Mathematics in Tamil Nadu, ibid. 5.20 (May 1959) 39, 42–44; Math-
ematics in Andhra, ibid. 6.8 (November 1959) 47–49; Mathematics in Kerala, ibid.
6.10 (December 1959) 61–64. See also R. C. Gupta, Some Telugu Authors and
Works on Ancient Indian Mathematics, Souvenir of the 44th Conference of the
Indian Mathematical Society, Hyderabad, pp. 25–28 (1978).
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Malayalam, Kannada, and Telugu. In a recent article, K. K. Bishoi mentions
the names of several scholars who composed mathematical works in Oriya.7

One wishes to know more about them.
Popularization of mathematics or any other science in India is not nec-

essarily coterminous with vernacularization. Within the Sanskrit tradition
itself there were attempts to compile popular handbooks of mathematics.
In the eighth century, Śr̄idhara abridged his own voluminous Pāt.īgan. ita
and prepared the Trísatikā in 300 verses. In his admirable analysis of The
Bakhshāl̄i Manuscript, Takao Hayashi has shown that it was not an inde-
pendent manual but a compilation made from diverse sources for practical
application.8 Hayashi also brought to light two other compilations of popular
nature, namely the anonymous Pañcavim. śatikā9 and the Caturacintāman. i of
Giridharabhat.t.a.10

But these attempts at popularization received sharper focus in Prakrit
and other regional languages. The mathematical works composed in these
languages, though largely modeled on Sanskrit manuals, contain much
information of contemporary relevance. The Śr̄imāla Jainas in the West,
the Kāyasthas in the North, the Karan.ams and other village accountants in
the South, and the merchants in all parts of India were the numerate pro-
fessionals who used mathematics in their daily transactions. The experience
these classes of people gained in the application of arithmetical computations
in their professions may be available from the sources in regional languages.
To put it differently, while the theoreticians of mathematics wrote in Sanskrit,
the practitioners of mathematics wrote in the regional languages. It is in the
writings of these professionals that we come across shortcuts in computational
7 K. K. Bishoi, Palm-Leaf Manuscripts in Orissa, in: A. Pandurangan and

P. Maruthanayagam (ed), Palm-Leaf and Other Manuscripts in Indian Lan-
guages, Institute of Asian Studies, Madras, 1996 pp. 46–56; esp. pp. 52–53:
“Orissa. . . has a rich heritage of mathematical treatises. Proficiency in math-
ematics is exemplified in the manuscripts. The authors of Orissan Math-
ematical manuscripts are Anirdha, Artta Dasa, Krushna Padhiari, Uccha-
vananda, Kunjabana Pattnayaka Krupasindhu, Gangadhara, Nimai Charana,
Radha Charana, Brajabhusana, Vamadeva, Shiva Mohanty, Sarangadhara, Hari
Nayaka and Srinatha of the Ganita Sāstras. The Līlāvat̄i Sūtra is very popular
in Orissa. The manuscript is available in all parts of the state. It provides scope
for all age groups to study mathematics through works of addition, subtraction,
multiplication, division, mensuration, trigonometry, algebra, etc.”

8 Takao Hayashi, The Bakhshāl̄i Manuscript: An Ancient Indian Mathematical
Treatise, Groningen Oriental Studies, Vol. XI, Egbert Forsten, Groningen, 1995.

9 Takao Hayashi, The Pañcavim. śatikā in its Two Recensions: A Study in the Refor-
mation of a Medieval Sanskrit Mathematical Textbook, Indian Journal of History
of Science, 26, 393–448 (1991).

10 Takao Hayashi, The Caturacintāman. i of Giridharabhat.t.a: A Sixteenth Century
Sanskrit Mathematical Treatise, SCIAMVS: Sources and Commentaries in Exact
Sciences, 1, 133–209 (2000).
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processes, verifying results, e.g., by casting off nines, conversion of one set of
monetary units into another, and so on.

For example, a Telugu manuscript of uncertain date contains an elaborate
classification of the variations of the Rule of Three, and also a simpler method
of solving the problems of the Rule of Five, etc. Thus, in the case of the Rule
of Five, the product of the last three terms is divided by the product of the
first two terms; or in the case of the Rule of Seven, the product of the last four
terms is divided by the product of the first three terms. This, in effect, is what
Bhāskara I seemed to suggest before Brahmagupta proposed the arrangement
of all the terms in two vertical columns. The Telugu solution is the ultimate
stage of a mechanical solution.11

Furthermore, the Sanskrit texts on arithmetic employ in their sums the so-
called Māgadhamāna, i.e., units of measurement, weight, and coinage, which
are said to have been prevalent in Magadha in ancient times (probably when
Āryabhat.a was writing at Kusumapura) and not the contemporary units.
Thus the Sanskrit texts – be it the Āryabhat. īya composed in the fifth century
in Kusumapura or the Gan. italatā by Vallabha Gan.aka of Jayanagara of the
mid-nineteenth century12 – are neutral in relation to space and time. Not so
the texts in the regional languages. Even when they are directly translated
from Sanskrit, these texts employ in their sums the contemporary metrological
units. This is of great value not only to metrology, but also for the economic
history of the region. I shall illustrate these features through the example of
an Apabhram. śa text composed by a Śr̄imāla Jaina, called Pherū.

In the first quarter of the fourteenth century, T. hakkura Pherū,13 a learned
Jaina employed as the assay-master at the court of the Khalji sultans of
Delhi, wrote six scientific texts of a popular nature in Apabhram. śa.14 One of
the six works composed by him is on arithmetic and geometry. It is variously
called Gan. itasārapāt. īkaumudī, Gan. itasārakaumudī, or just Gan. itasāra.15 This

11 Sreeramula Rajeswara Sarma, Rule of Three and Its Variations In India: Yvonne
Dold-Samplonius et al. (eds.), From China to Paris: 2000 Years Transmission of
Mathematical Ideas, Steiner Verlag, Stuttgart, pp. 133–156, especially 149 (2002).

12 This is perhaps the last work on mathematics to be composed in Sanskrit in the
traditional style, and is yet to be published. The Department of Sanskrit, Aligarh
Muslim University, possesses three manuscripts of this work.

13 On his life and works, see Sreeramula Rajeswara Sarma, T. hakkura Pherū’s
Rayan. aparikkhā, Viveka Publications, Aligarh, 1984, Introduction.

14 These six scientific works (and a seventh of a religious nature) were edited and
published by the Jaina savant Jinavijaya Muni under the title T. hakkura-Pherū-
viracita-Ratnaparīks. ādi-sapta-granthasam. graha, Rajasthan Oriental Research
Institute, Jodhpur, 1961.

15 Gan. itasārakaumudī: The Moonlight of the Essence of Mathematics by T. hakkura
Pherū, edited with Introduction, Translation and Mathematical Commentary by
SaKHYa (Sreeramula Rajeswara Sarma, Takanaori Kusuba, Takao Hayashi and
Michio Yano), Manohar, New Delhi (2009).
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work is largely based on Śr̄idhara’s Pāt. īgan. ita; several verses are phonetically
converted from Śr̄idhara’s Sanskrit.

But there is a considerable amount of input by Pherū himself, which is re-
lated to contemporary society. The units of measurement and the illustrative
examples given by Pherū reflect their wide applications in different profes-
sions of that period, such as that of traders, carpenters and masons. The
section on solid geometry contains rules for calculating the volumes of bridges
(pulabam. dha), niches (tāka), staircases (sopāna), domes (gom. mat.a), square
and circular towers with a spiral stairway in the middle (pāyaseva), and so on.
Some of these are new architectural features that were being introduced by
the sultans in the fourteenth century. Consider the following definition: “The
munārayās are like circular towers with a spiral stairway in the middle, as
far as the inside is concerned. But outside there is this difference. The outer
wall consists of half triangles and half circles.” The meaning of the cryptic
last sentence is this: the horizontal cross-section of the outer circumference
consists of alternate triangles and semicircles. It should be remembered that
about one hundred years prior to this, Qutbuddin Aibak built the Qutb Mi-
nar in Delhi. The lower storey of the Qutb Minar has alternately circular and
angular columns, the second storey has circular columns, and the third has
angular columns. I believe that Pherū is referring here to such a tower with
fluted columns.

Pherū also touches upon various aspects of contemporary life that are
quantifiable, from the average yield of different crops per bīghā to the quantity
of ghee that can be extracted from cow’s milk and buffalo’s milk. He is perhaps
the first mathematician to devise rules for converting the dates of the Vikrama
era into those of the Hijr̄i era and vice versa.16 Finally, he teaches us how
to construct magic squares for even (sama), odd (vis.ama), and oddly even
(sama-vis.ama) orders. This is the first systematic treatment of magic squares
in India; and it precedes the most elaborate discussion by Nārāyan.a in his
Gan. itakaumudī by about 40 years.17

16 Cf. S. R. Sarma, Conversion of Vikrama-Sam. vat to Hijr̄i in: B. V. Subbarayappa
and K. V. Sarma (eds.), Indian Astronomy: A Source-Book, Bombay, pp. 59–60
(1985); idem, Islamic Calendar and Indian Eras in: G. Kuppuram and
K. Kumudamani (eds.), History of Science and Technology in India, Delhi, Vol. 2,
pp. 433–441 (1990).

17 On Nārāyan. a’s treatment of magic squares, see Schuyler Cammann, Islamic and
Indian Magic Squares, History of Religions, 8.3–4, 181–209, 271–299 (1969);
Parmanand Singh, Total Number of Perfect Magic Squares: Nārāyan. a’s Rule, The
Mathematics Education, 16.2 (June 1982) 32–37; idem, Nārāyan.a’s Treatment of
Magic Squares, Indian Journal of History of Science, 21.2, 123–130 (1986); idem,
The Gan. itakaumud̄i of Nārāyan. a Pan.d. ita, Chapter XIV, English Translation with
Notes, Gan. ita-Bhārat̄i, 24, 35–98 (2002); Takanori Kusuba, Combinatorics and
Magic Squares in India: A Study of Nārāyan. a Pan.d. ita’s Gan. itakaumud̄i, Chapters
13–14, PhD Thesis, Brown University 1993.
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About the mathematical activity of Kāyasthas in North India, information
is available only from Assam, where they were known as Kāiths who kept
the land records. They developed a professional variety of arithmetic called
Kāithel̄i Am. ka, which was in verse form. A certain Dan.d. irām Datta meticu-
lously collected these Kāithel̄i sums and puzzles, and published them in a book
entitled Kautuk Āru Kāithel̄i Am. ka.18 In the sixteenth century, the Līlāvatī of
Bhāskara II was brought to Assam from Bengal by Durgāracan Barkāith, and
several translations were made into Assamese by different mathematicians.19

But the earliest of such translations from Sanskrit into a regional language
is the Pāvulūrigan. itamu in Telugu.20 That under the caliphate of al-Mansūr
at Baghdad Sanskrit astronomical-cum-mathematical texts were translated
or adapted into Arabic is well known, but not so well known is the fact that
Mahāv̄ira’s Gan. itasārasam. graha was translated into Telugu by Pāvulūri Mal-
lana in the eleventh century. Indeed it is the second extant work in the Telugu
language. Yet, only a small fragment of this text was published.21

From the small fragment published so far, we can see that Mallana was a
superb translator. The lucidity with which he rendered the terse Sanskrit of
Mahāv̄ira is worth emulating by every modern translator of scientific texts.
His way of handling mathematical rules or examples containing large numbers
– some examples have as many as 36 digits – is unrivaled even in Sanskrit. He
abridged the material of the Sanskrit original at certain places and expanded
at others. Thus, while the Sanskrit Gan. itasārasam. graha contains five methods
of squaring and seven of cubing, the Telugu version has only one each and
avoids all algebraic methods. Mallana also employs units of measure that were
prevalent in the Andhra region of his time. Another innovation or addition in
the Telugu version pertains to mathematics proper. There are 45 additional
examples under multiplication and 21 under division, which are not found in
Sanskrit. All these examples have one common feature: to produce numbers
containing a symmetric arrangement of digits. The Sanskrit original has only
a few, and Mahāv̄ira calls them “necklace numbers” (kan. t.hikā) because the

18 Dilip Kumar Sarma, Kautuk Āru Kāithel̄i Am. ka: A Study, Summaries of Papers,
All-India Oriental Conference, 40th Session, Chennai, 2000. p. 505 (TS & FA-32).

19 Dilip Kumar Sarma, A Peep into the Study of Development of Mathematics in
Assam from Ancient to Modern Times, Summaries of Papers, All-India Oriental
Conference, 39th Session, Vadodara, 1998, pp. 437–438 (TS & FA-11). See also
Ganganand Singh Jha, Asam k̄i gan. it̄iya den, Pūrvānchal Praharī, Guahati, 3 May
2000, p. 5; cited in : Hiteshwar Singh, Dr. G. S. Jha: A Broad-Based Historian of
Mathematics, Gan. ita Bhārat̄i, 25, 150–153 (2003).

20 Sreeramula Rajeswara Sarma, The Pāvulūrigan. itamu: the First Telugu Work on
Mathematics, Studien zur Indologie und Iranistik, Hamburg, 13–14, pp. 163–176
(1987).

21 Sārasam. grahagan. itamu, Pāvulūri Mallana (Mallikārjuna) pran. ītamu, ed, Vet.ūri
Prabhākara Śastri, Part 1, Tirupati, 1952. This edition contains only a small part
of the text, corresponding to Sanskrit Gan. tasārasam. graha 1.1–3.53.
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symmetric arrangement of digits is like the symmetric arrangement of beads
in a necklace. The Telugu version abounds in necklace numbers of diverse
patterns. For example, necklaces made up of just unities:

37 × 3 = 111,

101 × 11 = 1111,

271 × 41 = 11111,

37 × 3003003 = 111111111,

37 × 3003003003003 = 111111111111111,

and finally,

1 763 668 430 335 097 001 763 668 430 335 097 × 63 =
111 111 111 111 111 111 111 111 111 111 111 111 .

Or necklaces containing unities intermingled with pearl-like zeros:

14287143× 7 = 100010001,

157158573× 7 = 1100110011,

142857143× 7 = 1000000001,

777000777× 13 = 10101010101.

And here is the largest pearl necklace:

20 408 163 265 306 122 449 × 49 = 10 000 000 000 000 000 000 01.

Mallana introduces a new pattern and calls it a “moon-like” number be-
cause here the digits increase from 1 to n and then decrease to 1 just as the
phases of the moon gradually increase up to the full moon and then decrease
in an amānta lunar month, e.g., 111111× 111111 = 12345654321.

There are also reverse “moon numbers” in which the digits first decrease
from n to 1 and then increase up to n, like the phases of the moon in a
pūrn. imānta lunar month, e.g., 146053847× 448 = 65432123456.

I should also add that often several sets of factors are given for one product.
It is indeed likely that problems such as these which produce startling re-

sults attracted the attention, not just of serious mathematicians who invented
more problems like these, but also of laymen who posed these problems as
puzzles or riddles under the village tree. Thus we come to the realm of recre-
ational mathematics.22 A large corpus of such mathematical riddles exists as
oral literature, now styled ethno-mathematics.23 This oral literature has not
22 David Singmaster, South Bank University, London, is compiling the Sources in

Recreational Mathematics: An Annotated Bibliography. The seventh preliminary
edition was released in January 2002.

23 Cf. D. K. Sinha, Ethno-mathematics: A Philosophical and Historical Critique,
in: D. P. Chattopadhyaya and Ravinder Kumar, Mathematics, Astronomy and
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yet been recorded in a systematic manner. It consists of mnemonic tables of
multiplication and the like and also recreational mathematics.

In the seventeenth century, European travelers were much impressed by
the Indian merchant’s ability to perform mental calculations with great speed.
Thus, the French jeweller Jean-Baptiste Tavernier wrote in 1665 that the
Indian merchants learned arithmetic “perfectly, using for it neither pen nor
counters, but the memory alone, so that in a moment they will do a sum,
however difficult it might be.”24 The secret lies naturally in the number of
multiplication and other tables the merchant had committed to memory in
childhood. Hemādri, the chancellor of the exchequer (mahākaran. ādhipa) under
the last Yādavas of Devagiri in the second half of the thirteenth century, was
described as the outstanding computer (gan. akāgran. i). D. D. Kosambi writes
that a few tables for quick assessment survive in Hemādri’s name.25 Writing
in the first quarter of the nineteenth century, John Taylor records that “in
the Mahratta schools, this table [of multiplication] consists in multiplying ten
numbers as far as 30, and in Gujarati schools, in multiplying ten numbers as far
as one hundred.”26 At the beginning of the twentieth century, the Gazetteer of
the Bombay Presidency reports that merchant boys memorized no fewer than
20 types of tables: multiplication tables of whole numbers and of fractions,
tables of squares, tables of interest, and so on.27

In Bengal, Śubhaṅkara is a household name as a repository of mathemat-
ical or computational expertise,28 but nobody seems to have collected the

Biology in Indian Tradition: Some Conceptual Preliminaries, PHISPC Mono-
graph Series on History of Philosophy, Science and Culture in India, No. 3, Project
of History of Indian Science, Philosophy and Culture, New Delhi, pp. 94–119
(1995).

24 Jean-Baptiste Tavernier, Travels in India, tr. V. Ball, second edition, edited by
William Crooke, London, Vol. 2, p. 144 (1925).

25 Damodar Dharmanand Kosambi, Social and Economic Aspects of the Bhagavad-
Gītā, in: idem, Myth and Reality: Studies in the Formation of Indian Culture,
Popular Prakashan, Bombay, 1962, pp. 12–41, especially 32. I have not been able
to find any information on these surviving tables.

26 John Taylor, Līlāwat̄i : or a Treatise on Arithmetic and Geometry by Bhascara
Acharya, translated from the Original Sanskrit by John Taylor, M. D. of the
Hon’ble East India Company’s Bombay Medical Establishment, Bombay, 1816,
p. 145. The quotation is from a highly interesting “Short Account of the Present
Mode of Teaching Arithmetic in Hindu Schools” (pp. 143–161) which he appended
to his introduction.

27 Gazetteer of the Bombay Presidency, Volume IX, Part 1: Gujarat, Population,
Hindus, Bombay, 1901; reprinted as Hindu Castes and Tribes of Gujarat, compiled
by Bhimbhai Kriparam, ed. James M. Campbell, Gurgaon, 1988, Vol. 1, p. 80.

28 The Rev. Lál Behári Day, Govinda Sámanta or the History of a Bengal Ráiyat,
London, 1874; new edition under the title Bengal Peasant Life, London, 1878;
reprint: Macmillan and Co., Limited, London, 1920, p. 75: “He (the village school
master) was the first mathematician of the village. He had not only Subhankara,
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texts or sayings attributed to him.29 Surely children must have memorized
multiplication tables throughout the ages in India, but we do not know how
these were formulated or under what name they were known. In a Telugu
commentary on the Pāvulūrigan. itamu, I came across fragments of tables of
multiplication, of squares and square roots, and of cubes and cube roots. These
tables are in Prakrit and must have been in use in the Andhra region at some
time.30

But what is so special about these tables in the regional languages,
when the results can be obtained from any pocket calculator today? These
mnemonic tables are couched not in the modern form of the regional lan-
guages, but in earlier forms of languages. Thus in Uttar Pradesh, elderly
people tell me that they had memorized several multiplication tables of whole
numbers and fractions in Vrajbhāsā or in Avadh̄i. Therefore the importance
of the tables is more cultural than mathematical. These tables tell us about
the milieu in which they were formulated; the variety and the extent of the
tables tell us about the nature of mathematical education. Therefore these
tables are important and deserve to be recorded.

I mentioned earlier that much of the recreational mathematics is oral and
unrecorded. Allow me to present one case in which I luckily found a written
record as well as an oral version. In one of my visits to my native Andhra
Pradesh, a friend of my father gave me several copybooks in which his own

the Indian Cocker, at his finger tips, but was acquainted with the elements of
Vı́jaganita or Algebra.”

See also W. Adam, State of Education in Bengal, 1835–1838 (Extracts reprinted
in: Dharampal, The Beautiful Tree: Indigenous Indian Education in the Eighteenth
Century, Biblio Impex Private Limited, New Delhi 1983, pp. 269–270): “The only
other written composition used in these schools, and that only in the way of oral
dictation by the master, consists of a few of the rhyming arithmetical rules of
Subhankar, a writer whose name is as familiar in Bengal as that of Cocker in
England, without anyone knowing who or what he was or when he lived. It may
be inferred that he lived, or, if not a real personage, that the rhymes bearing that
name were composed, before the establishment of the British rule in this country,
and during the existence of the Muslim power, for they are full of Hindustani
or Persian terms, and contain references to Muslim usages without the remotest
allusion to English practices or modes of calculation.”

Edward Cocker (1631–1675) was an English pedagogue whose posthumous pub-
lications Arithmetick, Being a Plain and Easy Method (1678) and Algebraical
Arithmetic or Equations (1684) were so popular that “according to Cocker” has
become a proverbial expression to mean “very reliable.” An analogous expres-
sion in German “nach Adam Riese” perpetuates the memory of Adam Riese
(1492–1559), who wrote the earliest mathematical primers in German.

29 D. K. Sinha, Ethnomathematics: A Philosophical and Historical Critique, op. cit.,
discusses on pp. 99–102 some old Bengali rhymes, which may be of Śubhaṅkara.

30 Sreeramula Rajeswara Sarma, Some Medieval Arithmetical Tables, Indian Jour-
nal of History of Science, 32, 191–198 (1997).
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father had collected various items of mathematical interest.31 Here I found
a Telugu version of the so-called Josephus problem.32 The solution to this
problem consists in arranging in a circle two groups of an equal number of
persons or objects in such a manner that each nth person or object belongs to
the same group. Though named after the Jewish historian, Flavius Josephus
(37–100 c.e.), this problem was not known in Europe before the tenth century.
There the problem runs as follows:

Fifteen Jews and fifteen Christians were traveling in a boat when the boat
developed a leak. So the Christian captain arranged all the thirty persons in
a circle and kicked out each ninth person and thus got rid of all the Jews.

Japan is the only other place where this problem was known, and there it
became popular some time after the twelfth century. In the Japanese version,
a man had 15 sons by his first wife. After her death, he married another
woman who already had 15 sons of her own. The second wife arranged all the
30 sons and stepsons in a circle, explaining that she would count and take out
each tenth one from the circle and that the last one in the circle would inherit
the father’s property. After she had thus eliminated 14 stepsons one after
the other, the 15th stepson realized the trick and insisted that the counting
should begin from him. She agreed to do so, but the consequence was that
all her 15 sons were eliminated. The last one to remain in the circle and thus
to inherit the patrimony was the 15th stepson, who cleverly saw through the
stepmother’s game.33

The Telugu version that I discovered runs as follows. Fifteen Brahmins
and 15 thieves had to spend a dark night in an isolated temple of Durgā.
The goddess appeared in person at midnight and wanted to devour exactly
15 persons, since she was hungry. The thieves naturally suggested that she
should consume the 15 plump Brahmins. But the clever Brahmins proposed
that all the 30 would stand in a circle and that Durgā should eat each ninth
person. The proposal was accepted by Durgā and the thieves. So the Brahmins
arranged themselves and the thieves in a circle, telling each one where to stand.
Durgā then counted out each ninth person and devoured him. When the 15
were eaten, she was satiated and disappeared, and only Brahmins remained in

31 My father’s friend and his father were hereditary Karan. ams who maintained the
village records. The copybooks are datable to the 1930s, but the material collected
therein is much older.

32 On the Josephus problem, see David Eugene Smith, History of Mathematics, New
York, Vol. II, pp. 541–544 (1925).

33 Osamu Takenouchi et al. (eds. and trs.), Jinko-ki, Wasan Institute, Tokyo 2000,
pp. 139–140. “Wasan” is the indigenous mathematics developed in Japan dur-
ing the Edo Period (1603–1867). The Jinko-ki, which was published in 1627, is
one of the earliest texts of this genre. The present edition contains an English
translation, together with the facsimile reproduction of the original Japanese
illustrated woodblock edition of 1627.
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the circle. The problem is, how did the Brahmins arrange themselves and the
thieves in the circle? The answer is composed in a Telugu verse of a classical
meter.

The copybooks contained another variant of the problem, namely, to ar-
range 30 Brahmins and 30 thieves in a circle in such a way that each 12th
person would be a thief. The solution to this also is given in a classical meter.
Since I was pleased with this discovery, a farmer in my village posed the same
problem to me. His solution is the same, but it is couched in free verse.34

Two versions of the solution to the same riddle in the same geographic
area does indeed demonstrate the wide popularity of mathematical riddles in
Andhra Pradesh. Whether this is an offshoot of the popularity of mathemat-
ical literature, or whether riddles – mathematical or otherwise – are trans-
mitted in a different process independent of literature, is a question I am not
competent to answer. But a collection of such mathematical riddles would
certainly enrich the history of our mathematics.

There is yet another area in which regional languages provide valuable
source material, viz. the dissemination of modern mathematics in the nine-
teenth century through mathematical textbooks in regional languages. As far
as I know, Dhruv Raina and S. Irfan Habib are the only scholars who have
studied this aspect, in connection with the Urdu textbooks and other popular
writings on mathematics by Master Ramchandra (b. 1821).35

I conclude this presentation with a plea that organized efforts be made to
save this mathematical heritage in the regional languages, both of the recorded
and of the oral varieties.

A final poser: Watching TV on a visit to Tamil Nadu, I discovered that zero
is called pūjyam in Tamil, “worthy of worship.” I would worship any person
who can explain why zero has such an exalted name in the Tamil language.36

34 Sreeramula Rajeswara Sarma, Mathematical Literature in Telugu: An Overview,
Sri Venkateswara University Oriental Journal, 28, 7790 (1985).

35 S. Irfan Habib and Dhruv Raina, The Introduction of Scientific Rationality into
India: A Study of Master Ramchandra, Urdu Journalist, Mathematician and
Educationist, Annals of Science, 46.6 (November 1989), pp. 597–610; Dhruv
Raina and S. Irfan Habib, Ramchandra’s Treatise through the “Haze of the
Golden Sunset”: An Aborted Pedagogy, Social Studies of Science, 20.3 (1990),
pp. 455–472; Dhruv Raina, Mathematical Foundations of a Cultural Project:
Ramchandra’s Treatise through the “Unsentimentalized Light of Mathematics,”
Historia Mathematica, 19, pp. 371–384 (1992).

36 In the discussion following my lecture, I learned that zero is called pūjyam in
Malayalam and Marathi also. It would be interesting to know when this designa-
tion came into vogue and in what context. I also learned a Tamil proverb, which
declares, “Inside the pūjyam (zero), there exists a rājyam (kingdom).”
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Arthaśāstra, 84, 105
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Bakhshāl̄ı Manuscript, 203
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Gan. eśa’s, 167
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Jñānarāja, 154
Josephus problem, 210
Journal Asiatiques, 139
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Kamalākara, 154, 169
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L̄ılāvat̄ı, 133, 138, 159, 201
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Mahāv̄ıra, 141, 142, 145, 153, 206
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Nālandā, 34
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Tretā, 90, 96
Trísatikā, 203
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