Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.
system here presented has the support of much better evidence than that for atomic evolution from the standpoint of astronomy alone.

We wish to thank Professor A. C. Lunn of the Department of Mathematics, for outlining for us the method for determining the distances between the positive and negative electrons.

1 Moseley, Phil Mag., London, 26, 1024; 27, 703.
2 Lorentz, The Theory of Electrons, p. 47.
7 Fleck, Trans. Chem. Soc., 103, 381 and 1052.

HUNTINGTON’S CHOREA IN RELATION TO HEREDITY 
AND EUGENICS

By C. B. Davenport

STATION FOR EXPERIMENTAL EVOLUTION, CARNEGIE INSTITUTION OF WASHINGTON
Read before the Academy, April 20, 1915. Received, April 5, 1915

It is now generally conceded that predisposition plays an important rôle in mental disorder but the views as to the nature of its part are very diverse and hazy. Some investigators conclude that there is an inheritance of a particular type of mental trouble, while others conceive that only a general psychopathic constitution is inherited. Again a difference of view maintains as to the nature of the recognized mental ‘diseases’—by some these are regarded as distinct ‘entities,’ manifestations of a single, indivisible, disturbing factor. Others conceive of them as syndromes or chance associations of symptoms. Even those who hold the latter view would perhaps except as the one clear case of a neuropathic entity the condition known as ‘Huntington’s Chorea.’ This chorea is defined by the following traits: (1) persistent tremors of the head, appendages and trunk; (2) the onset of such tremors in middle or late life; (3) the progressive nature of the tremors; and (4) progressive mental deterioration. These characters are frequently found together; is their association a necessary one?

A study of four family complexes in eastern Long Island, south-western Connecticut, south-central Connecticut and eastern Massachusetts which show nearly a thousand cases of Huntington’s chorea yields the
remarkable result that practically all can be traced back to some half-
dozen individuals, including three (probable) brothers who migrated to
America during the 17th century. But, already, numerous 'biotypes' hav-
ing specific and differential hereditary behavior have appeared. Thus
there is a biotype in which the tremors are absent but mental de-
terioration present; a biotype in which the tremors are not accompanied
by mental deterioration; a biotype in which the chorea does not pro-
gress; and a biotype in which the onset of the choreic movements is in
early life. In general, the symptomatology of chronic chorea is dissimi-
lar in different strains of families. The age of onset, the degree of mus-
cular involvement, the extent of mental deterioration all show family
differences and enable us to recognize various species, or biotypes, of
the disease. These biotypes are less striking than they would be were
it not for the extensive hybridization that is taking place between bio-
types in random human matings.

The method of inheritance of some of the elements of Huntington's
chorea has been worked out. In general, the choreic movements never
skip a generation and in other respects show themselves clearly to be a
dominant trait. The mental disorder is usually of the hyperkinetic or
manic type and this also shows itself as a dominant. The age of onset
apparently tends to diminish in successive generations—'law of antici-
pation'—but this is partly, if not wholly, illusory and is due to the fact
that in comparing the age of onset in grandfathers with that in grand-
children we are not comparing on the same basis, for the grandparents
are a selected lot (selected on the basis of late onset—at least late enough
for them to become parents), while grandchildren include those in whom
the onset is so early in life that they will never marry. If instead of
comparing the average age of onset in successive generations, one com-
pares the age of onset in a number of choreic parents, their parents and
their grandparents, then the evidence for anticipation vanishes. Eight
such series give for average age of onset of the propositus 35.5 years,
parent 38.8, grandparents 36.9. In this series we can see no evidence
of anticipation.

Among the 3000 odd relatives of the 962 choreics studied many nerv-
ous traits are recorded. Thus epilepsy is recorded 39 times, infantile
convulsions 19 times, meningeal inflammations and brain fever 51 times,
hydrocephaly 41 times, feeblemindedness 73 times, Sydenham's chorea
11 times, and tics 9 times, mostly in one small family. This incidence,
which would seem high for an unselected population, suggests that
chorea occurs in families characterized by a general liability to nervous
and mental troubles.
Though it can be shown that the 962 cases of chorea originated from 6 or 7 ancestors and that the tendency has been handed down almost without a break through the generations and that for generations there have been individuals who recognized the hereditary nature of the disease and were influenced in marriage accordingly; nevertheless, there is no clear evidence that persons belonging to the choreic lines voluntarily abstain to any marked degree from, or are selected against, in marriage.

THE ALCYONARIA AS A FACTOR IN REEF LIMESTONE FORMATION

By L. R. Cary

DEPARTMENT OF BIOLOGY, PRINCETON UNIVERSITY

Presented to the Academy, March 24, 1915

The early students of coral reef formation based their conclusions concerning the depth at which reef formation could take place and the rate at which material was added to such reefs upon the known bathymetrical distribution and growth rate of stony corals (Madreporaria). The results obtained from the examination of the cores from borings made at the Island of Funafuti in the South Pacific showed that, in this particular region at least, calcareous algae of the genus *Halimeda* were a very important factor in reef limestone formation. Among the other group of lime secreting animals, those species of Alcyonaria, which form a massive skeleton have received proper recognition as contributing to reef formation. The remaining representatives of this group have been neglected as reef formers because their limy secretion is laid down in the form of minute spicules which are set free at the time of the disintegration of the living tissues of the colony leaving no recognizable skeleton.

On most coral reefs in all parts of the world the Alcyonaria with free spicules are much more abundant than those forming a massive skeleton while in many regions they constitute by far the greatest part of all lime secreting organisms living permanently attached to the bottom. On many reef areas in the Florida-Antillean region the areas occupied by stony corals and calcareous algae are relatively small while flexible alcyonaria or the family Gorgonaceae make up the most characteristic feature of the fauna. The spicules of these organisms are found in practically all bottom samples both from the crests of the reefs and in the soft mud from the channels between the reefs so it is evident that they may be incorporated into the reef limestones before they have undergone marked erosion.